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Abstract. This work presents the formulation and numerical implementation of the dual
reciprocity boundary element method applied to the analysis of elastostatic problems
considering body loads. Provided the traditional boundary element method is unable to treat
directly the influence of body loads, the dual reciprocity approach is used to make this
consideration, transforming domain integrals in equivalent boundary integrals so that the
method does not lose its most interesting features which are discretization and integration
only on the boundary of the problem. The numerical results obtained from the analysis of a
rotating disc are compared to the analytical solution for this problem in order to verify the
influence of mesh refinement and internal node density on the accuracy of the method in
study.
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1 INTRODUCTION
The computation of body forces in standard elastostatic analysis is an essential

characteristic of modern numerical analysis methods. Applications like dynamic analysis,
gravity forces and crack patch repairing need this kind of implementation. The Dual
Reciprocity Boundary Element Method (DRBEM) is shown as an alternative way to treat
body forces using the boundary integral equation approach. Besides the mathematical and
numerical implementation, the main advantages of the dual reciprocity method are presented
and the accuracy of results through an error analysis is discussed. In this first section, it is
shown a theoretical discussion about the necessity for the use of the dual reciprocity method
and the differences in comparison with the standard boundary element method.

The dual reciprocity method is presented as an alternative to the domain cell integration,
used to treat the body forces in the boundary integral equation approach. This treatment is
carried out by computing domain integrals, with techniques like Gauss method, inside finite
cells created to discretize the domain where the body forces exist. Although it is a useful
approach to take into account the body forces, provided it handles with the domain integral of
body forces, it is not so interesting. The domain cell integration method reduces the attractive
characteristic of the boundary element method that is the exclusive use of boundary integral
equations evaluated on the boundary of the problem.

In order to keep the boundary integral equations and handle with the body forces, it is
necessary to transform the domain integral, related with the body forces, into boundary
integrals. The way to do this is the same way used to bring the domain integral equation,
obtained from the Navier’s elasticity equation of equilibrium, from the domain to the
boundary of the problem. This procedure involves the application of the reciprocity theorem.
After applying the this theorem to the complete domain integral it is transformed into
boundary integrals, but it remains one domain integral, that is the one related with the body
forces. Then, the reciprocity theorem is applied again to transform the body force domain
integral in a boundary integral, which is able to represent the body forces. Provided the
reciprocity theorem is applied twice, this method is called dual reciprocity, and it transforms
the body force domain integral into equivalent boundary integrals approximating the body
forces through interpolation functions.

Note that once the DRBEM formulation is not completely free from domain
representations, it needs some domain co-ordinates to evaluate functions of its kernel. These
domain co-ordinates are called domain nodes. The influence of the amount of these nodes and
the boundary elements mesh refinement in the accuracy of the results obtained with the
method is an important characteristic and will be discussed in this work.

2 FORMULATION
The DRBEM was first proposed by Nardini and Brebbia1 (1982) and has been used by

several authors through years with few modifications. The formulation used in this work is
quite similar to the one used by Partridge, Brebbia and Wrobel2 (1992) and by Domínguez3

(1993).
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The starting point for DRBEM formulation is the boundary integral equation4 itself. This
equation is obtained through the application of the reciprocity theorem on the equilibrium
equation of the system, and is shown in equation 1.

)(*** diijiikikkiki ucdutdubdut +Γ=Γ+Γ ∫∫∫ ΓΩΓ (1)

As mentioned before, there is a domain integral, equation 2, mixed between the boundary
integrals, that is due to the body forces.
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The bk term is approximated by a set of coefficients and functions, as
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in this equation )j(
kα represents a set of coefficients to be determined, initially unknown and

the jf represents the approximation functions based in the geometry of the problem.

There is a solution, )(ˆ j
mku ; capable to satisfy the Navier’s equation like mentioned in Kane5

(1993), which can be determined by equation 3.
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In order to solve the DRBEM problem it is necessary to determine an amount of 
)(ˆ j

mku
solutions equal to the total number of nodes defined in the problem, or the number of nodes
after summing the boundary nodes and the internal DRBEM nodes. These solutions are called
particular displacements.

Substituting equations 3 and 4 in the domain integral shown in equation 2 and applying the
reciprocity theorem to the remaining domain integral leads to:
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in this equation 5, 
j

mkt̂  represents the traction related to the particular displacements j
mkû .

Equation 5 is free of domain integrals and is ready to be evaluated by the boundary
element method. Note that the reciprocity theorem is applied twice, first to transform the
whole domain integral equation into boundary integral equation and then to transform the
remaining domain integral equation in to a boundary integral equation, leading to the
equation 5. This procedure gives the name to the method.
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Provided there is a final equation, what means boundary integrals only able to handle with
body force through a boundary integral representation, it is possible to represent this equation
in a matrix form, in order to prepare a system to a numerical implementation.

( )∑ ∫∫∫∫
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The matrix system represented in equation 6 is ready for the application of a numerical
evaluation method like the Boundary Element Method (BEM). In order to evaluate the
analytical integration through this numerical method, it is necessary to transform them into
ordinary summations, given by
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It is interesting to see that the equation 7 is obtained after the application of the boundary
element method, in other words, a discretized boundary element mesh approximates the
continuum. This means that all the continuum values, related with physical or geometrical
properties, are represented by interpolation functions called shape functions. Note that the
values of û and t̂  are known, provided they are dependent only on geometric data of the
elements and internal nodes, although shape functions are used to interpolate their values in
the same way that are used to interpolate u and t. This procedure brings a simplification in the
numerical implementation because it makes possible to use the same H and G matrices in both
sides of the equation 7. Although, this technique introduces an error in the evaluation of the
right hand side terms of equation 7, Partridge, Brebbia and Wrobel2 (1992) have shown that
this error is worthless and there is a significant improvement in the efficiency of the method.

At this point, equation 7 is ready to be used. In order to generate a matrix equation system
it is necessary to apply equation 7 to each node of the problem, what leads to the general
matrix equation shown in equation 8.

( )TGUHtGuH ⋅⋅−⋅=⋅−⋅ ˆˆ
(8)

It is possible to make αααα = F-1b, generating

( ) bFTGUHtGuH ⋅⋅⋅−⋅=⋅−⋅ −1ˆˆ
(9)

equation 9 is the basic equation to use the DRBEM and involves just boundary integral
equation.

As it can be seen, there are some new definitions typically used by DRBEM that are not
easily understandable by conventional BEM users. Definitions like internal nodes, αααα vector
and approximation functions will be better explained in the section below.
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3 DRBEM DEFINITIONS – INTERNAL NODES
The first DRBEM definition is the internal node concept. Conventional BEM uses

boundary nodes, that represents characteristic points on the boundary geometry of the
problem needed to define the limits of the elements. Then, boundary nodes usually are
associated with the boundaries of every single element on the surface of the problem. In other
way, internal nodes are typically used by DRBEM and are significantly different of the
boundary nodes. First, the internal nodes are defined in the domain of the problem. Second,
they do not represent characteristic points of the geometry and are not used to define limits of
any kind of element.

The internal nodes are defined in order to represent domain characteristics. Note that it is
not necessary to define internal node in order to obtain the boundary solution, although the
accuracy of the solution is strongly related with the amount of internal nodes used when there
is a body load involved. The sufficient number of internal nodes will be discussed later in this
paper.

Besides the solution of the problem, internal nodes can be used like conventional BEM
internal points in order to have domain values needed to improve solution interpolation and
post-processing colour map generation. In some kind of problems, such as the one used in this
work, it is possible to obtain the internal node solution directly, shown by Partridge, Brebbia
and Wrobel2 (1992). In this case, it is possible to evaluate equation 7 inside the domain, what
means that the value of the variable c is 1. Then, equation 7 can be rewritten like equation 10.
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All variables in this equation are known provided they were calculated by the solution of
the problem. Only the variables related to the displacement of internal nodes remain unknown
and can be calculated.

4 DRBEM DEFINITIONS – αααα VECTOR

The α vector can be obtained by evaluating equation 3. Just to make it easy to understand,
equation 3 will be reproduced and is now presented as equation 11.
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Since it is necessary to obtain the α vector, the other components of the equation 11 must
be known. The other components of equation 11 are the approximation functions, that will be
assumed as known functions provided they will be chosen from a variety of proposed ones,
and the b vector. The b vector is related with the body forces evaluated in the domain of the
problem. This body force can be calculated using different equations depending on the kind of
body force that it is necessary to take into account. In the case of body force due to inertia in a
rotating disk, with angular velocity ω and density ρ, the b vector on a point xi is given by
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ii xb 2ρω= (12)

other kinds of body forces like domain loads or magnetic fields will need different
mathematical functions in order to give appropriated b vectors.

Equation 11 can be written in matrix form in order to prepare it to be solved by a
mathematical method. Then, equation 11 can be written as

Fb = (13)

In equation 13, b is a column vector; each line containing one body force evaluated
according to a body force relation in each one of the DRBEM collocation points. F is a
matrix; each column containing a fi vector of approximation functions evaluated in every
collocation point of the DRBEM.

Since all the members of equation 13 are known, it is possible to obtain the α vector by
solving the matrix system.

bF 1−= (14)

Then, a d vector of known values can be substituted in the right hand side of equation 9,
resulting in

dtGuH =− (15)

with d vector defined by equation 16.

TGUHd )ˆˆ( −= (16)

the d vector introduces the body force influences and it is obtained by multiplying known
matrices and vectors.

5 DRBEM DEFINITIONS – APPROXIMATION FUNCTIONS

The approximation functions, fi, and the particular solutions û and t̂ , used in the DRBEM,
have not been defined by the formulation. The unique restriction for them is that the resulting
matrix F, equation 13, can not be singular.

In order to define the approximation functions, it is usual to propose a mathematical
relation for f and calculate the û and t̂  based on it using equation 4. The mathematical
relations commonly proposed for the approximation functions are: trigonometric series;
Pascal’s triangle elements; and the r distance used to define the fundamental solutions.

In this work it will be used a function known as r type function, that was first used by
Nardini and Brebbia1 (1982) and adopted by the majority of the researchers after them due to
its simplicity and accuracy. This function is based on the series shown in equation 17.

m2 r...rr1f ±±±±= (17)

Theoretically, any kind of combination of the terms of equation 17 may be used as r type
approximation function. In this work it will be used the function
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rrf −=1)( (18)

This combination has been chosen because of the good results shown by Domínguez3

(1993). This kind of function is interesting because it assures the non singularity of the F
matrix since the main diagonal of the matrix will never be zero.

6 FINAL DRBEM FORMULATION
The definition of the approximation function to be used in the DRBEM formulation leads

to a particular form of the general formulation shown before. The difference occurs in the
evaluation of the û and t̂  functions, since both of them depend on the kind of approximation
functions chosen.

In the case of an approximation function like the one shown in equation 18, substituting it
in the equation 4, the û and t̂  functions will be expressed by the equations 19 and 20.
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21 DBA , G is the shear modulus and ν is the Poisson

ratio.

7 COMPUTATIONAL IMPLEMENTATION
The numerical implementation6 of DRBEM has been made using a pre-existent BEM base

program, developed to solve 2D, elastostatic, isotropic and linear problems using boundary
element methods. In order to implement the DRBEM on this program it was necessary to add
new functions specifically to evaluate the new terms introduced by the DRBEM. No
modifications were needed in the basic BEM code, except some verification keys to change
the program flux between conventional BEM and DRBEM.

The function calc_alfa is responsible for calculating the α vector; calc_UcPc is used to
obtain the particular solution matrices Û and T̂ using the functions calc_uchap and
calc_pchap in order to obtain the numerical values for the particular solutions. Finally, the
function calc_d receives the results of all previous functions and calculates the d vector used
by DRBEM to take into account the body force influence.

Although the program was implemented to compute the rotating disk inertial terms, the
implementation can be easily extended to other domain forces with little changes in the
calc_alfa function. This facility is possible in the majority of the cases since the inertial terms



���	

���
��,��-�&
��.���	�������
������	��/��0�
���$������������������������������������������������������������������

do not depend on node variables like displacement or tractions. The easily extention
procedure is due to the modularization of the DRBEM functions which separates them from
the main BEM functions.

The data flow of the program6 is shown in figure 1.

dad_elq#

formata_dad_q

mostra_geo_q

mostra_cdc_q

gera_p_in

testa_ponto

aceita_dist

calc_HeG

jac_e_norm f_forma

sol_fund_el2D

gh_nsing g_sing

sf_nsing

aplica_cdc_q
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reord_DeT
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map_cor
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Figure 1. DRBEM program data flow6
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8 RESULTS
In order to obtain the influence of parameters like amount of internal nodes and boundary

element mesh refinement in the accuracy of the DRBEM, it will be analysed a well known
problem, which has analytical solution that makes possible to compare the numerical method
result with an analytical benchmark.

The reference problem is a rotating disk, which has analytical solution for the radial
displacement ur, shown by Tymoshenko7 (1970) and is given by

( )



 −⋅= 32

4
11 r

E
ur ρων (21)

Using this equation, it is possible to obtain the radial displacement ur, provided the
Young’s modulus E, the Poisson ratio ν, the mass density ρ, the angular velocity ω and the
rotating disk radius r.

Since it is known the analytical solution for the benchmark problem, it is necessary to
solve it through the numerical method, in this case the DRBEM. Like in any other BEM
problem, it is necessary to model the boundary geometry of the problem and choose the
boundary element mesh to be applied to this geometry. Due to the intrinsic symmetry of this
kind of problem, it has been modelled just a quarter of the rotating disk and symmetric
boundary element conditions were applied to the symmetry lines. The geometry and initial
boundary element mesh can be seen in figure 2.

Figure 2. Symmetric model of rotating disk to DRBEM analysis.

It is possible to see in figure 2 a set of internal nodes regularly distributed through the
domain. These nodes were automatically generated by the code and used in the DRBEM
calculation. Both, internal nodes and boundary element mesh can be automatically generated
by the code in order to change the mesh and internal node quantity and distribution. So, the
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same problem can be analysed many times, using different kind of internal node distribution
and different boundary element mesh discretization at a time.

After this process, calculated data can be grouped conveniently to create a convergence
surface graphic. This surface shows the error between the analytical solution and the DRBEM
solution for each pair, boundary element mesh and internal point quantity. Then, the
convergence surface makes possible to analyse the DRBEM solution behaviour according to
the internal nodes and boundary element mesh variation.

The percentage error is calculated by comparing the analytical solution, evaluated
according equation 21, with the respective DRBEM numerical method solution.

The problem data, necessary to evaluate the analytical solution and to apply the DRBEM
analysis, are given in table 1.

Table 1. Material properties and problem data

Young’s modulus (E) 71000 MPa
Poisson ration (ν) 0,3
Material mass density (ρ) 8000 kg/m3

Rotating disk radius (r) 1 m
Rotation speed (ω) 100 rad/s

Since these data are substituted in equation 21, the analytical solution for the rotating disk
can be numerically evaluated as 1.972 x 10-4 m, then, the benchmark is set to this value.

Using the same set of data, shown in table 1, it is possible to run the DRBEM program and
create different discretizations for the mesh and different amount of internal nodes. These
changes result in different solution values that can be compared with the analytical
benchmark.

In order to create the convergence surface, boundary element meshes have been created
from a minimum discretization of one (1) boundary element per boundary edge to a maximum
discretization of ten (10) boundary elements per boundary edge. For each one of this
boundary element meshes it has been created different amount of internal nodes from a
minimum of zero (0) internal node to a maximum of sixty-four (64).

The resulting convergence surface can be seen in figure 3. The convergence behaviour can
be better analysed using table 2.
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Figure 3. Convergence analysis surface

Table 2. Percentual error behaviour according internal nodes and amount of elements variation.
n. of elements

n. internal nodes   
1 2 3 4 5 6 7 8 9 10

0 17,6 14,1 11,8 11,4 11,1 10,9 10,9 10,9 11,7 11,8
1 14,1 11,9 9,2 7,7 6,8 6,2 6,0 5,9 5,8 5,8
4 11,1 8,9 6,2 4,6 3,6 3,1 2,7 2,4 2,3 2,2
8 10,3 8,1 5,4 3,8 2,8 2,2 1,8 1,5 1,3 1,2

13 10,0 7,8 5,1 3,5 2,5 1,9 1,5 1,2 1,0 0,9
20 9,9 7,6 5,0 3,3 2,4 1,8 1,4 1,1 0,9 0,8
28 9,8 7,6 4,9 3,3 2,3 1,7 1,3 1,1 0,8 0,7
37 9,8 7,5 4,9 3,2 2,3 1,7 1,3 1,0 0,8 0,7
50 9,8 7,5 4,9 3,2 2,3 1,7 1,3 1,0 0,8 0,7
64 9,8 7,5 4,9 3,2 2,3 1,7 1,3 1,0 0,8 0,6

From figure 3 or table 2 it is possible to see that increasing the boundary element mesh
discretization leads to a reduction in the error until a stable level near to 10%, without using
internal nodes. On the other hand, for a minimum boundary element mesh, it is possible to see
that the increasing of internal node quantity also leads to a reduction in the error until a stable
level near of 10%. So, the simple procedure of refining the boundary element mesh is not
sufficient when it is necessary to take into account the body force effect in order to solve
problem. Similarly, increasing the amount of internal nodes for DRBEM solution, using a
poor boundary element mesh, produces as good results as the boundary element mesh
refinement by itself.

er
ro

r [
%

]
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Analysing the convergence surface it is possible to see a lower region, less than 1% error,
that could be a good region to work for DRBEM solution. This low error region is a
combination of a representative boundary element mesh refinement and a quantity of internal
nodes able to well consider the body forces.

So, in the rotating disk case, using around eight (8) elements per boundary edge and twenty
(20) internal nodes can make a DRBEM representative analysis of the problem.

9 CONCLUSIONS
The accuracy of DRBEM solution is strongly dependent on the boundary element mesh

refinement and on the amount of internal nodes used to obtain the solution for the body force
problem. This characteristic could be analysed by the convergence surface shown in figure 3.

The identification of such behaviour is interesting because it makes possible to choose a
minimum of both, boundary element mesh discretization and a number of internal nodes used
to describe the geometry of the problem and its body force contribution. Besides, the
knowledge of the influence of boundary element mesh refinement and the amount of internal
nodes in the accuracy of the solution of the problem can help in reducing unnecessary
computational work, reducing the time to solution of DRBEM solver.

This optimisation can be done provided the minimum boundary element mesh
discretization and the less internal node quantity for a good accuracy of the solution.
Reducing the amount of boundary elements and internal node leads to a reduction in the size
of matrices needed to solve the problem. This kind of reduction leads to a reduction in the
computational resource consumption and in the time to solution.

Then, the study of DRBEM convergence behaviour is a useful approach in order to obtain
good accuracy of results with less computational resource and time consumption, which is an
important concern when dealing with huge problems or more complex applications, like
iterative body force solution.
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