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Abstract.
The Local Optimal Point Interpolation (LOPI) method is a “truly meshless” method

based on the boolean sum of a radial basis function interpolator and a least squares approx-
imation in a polynomials space. In this way, it can interpolate solutions in data points,
while at the same time fit exactly polynomial solutions up to certain degree. Systems of
PDEs can be solved in strong form using point collocation, without meshes or integration
cells. Essential boundary conditions (which cause problems in many other meshless meth-
ods) are applied directly; and natural boundary conditions are implemented by means of
additional equations. This work presents a description of the method, and some examples
of applications.
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1 INTRODUCTION

Meshless methods are the subject of great attention in recent years, and many schemes
were developed and tested. We refer for instance to reviews done by Belytschko et al.,1

Li and Liu,4 Liu et al.,5 and Del Pin et al.6 Applications of these methods are found in
large deformation problems, strong discontinuities analysis, Lagrangian formulations in
fluid dynamics, and many other areas.
From a computational point of view, truly meshless methods solving PDEs in strong

form have many advantages compared with meshless methods using integration cells (a
background mesh) to solve PDEs in weak form.
The approach followed in this work was introduced by Zuppa and Cardona9 and is

based on the use of Local Optimal Point Interpolators with compact support radial basis
functions.

2 DESCRIPTION OF LOPI METHOD

The following is a brief description of the method. Mathematical details, and considera-
tions about approximation properties were analyzed by Zuppa and Cardona.9

2.1 Data approximation

In LOPI method, data is approximated by means of a lineal combination of values ϕ in
scattered points, multiplied by an interpolation function, so:

f(x) =
K∑

i=1

TXi(x) · ϕi
(1)

The set X , defined by points in the neighborhood (cloud) of the evaluation point, char-
acterizes this scheme as compactly supported, lowering its computational cost.
The interpolation function is defined as:

TX (x) = v(x) · PX + b(x) ·QX (2)

where the second internal product is the Least Squares approximation to the data, and
the first one is the correction used to make the approximation interpolant.
Matrix QX is the standard Weighted Least Squares normal matrix, defined as:

QX = (Bt
X ·W ·BX )−1 ·Bt

X ·W (3)

where BX is the matrix constructed from a polynomial basis for the desired reproduction
order r (xc are the coordinates of evaluation point, x(i) are the coordinates of scattered
points in the set X ) :

BX =






1 x1 − xc . . . (x1 − xc)
r

...
...

...
1 xK − xc . . . (xK − xc)

r




 . (4)
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and W is the weight matrix, usually a diagonal matrix based on a decreasing radial basis
function (or even the Identity matrix if standard least squares is used as in ref.9).
Vector b(x) is the polynomial basis for the desired approximation order:

b(x) = (1,xc, . . . ,x
r
c) (5)

Matrix PX is constructed as:

PX = V −1(I − BX .QX ) (6)

where V is the Vandermondian (or Grammian) of the radial basis function (RBF) g :

V =






g(x1−x1) · · · g(xK−x1)
...

. . .
...

g(x1−xK) · · · g(xK−xK)




 (7)

and it is assumed to be invertible, g is a radial basis function, for example the multiquadric
radial C∞ function :

g(x) =
√

1 + cq ‖x‖2, x ∈ R
n (8)

Vector v(x) is defined as:

v(x) = (g(xc−x1), . . . g(xc−xK)) (9)

other radial basis functions (like Gauss exponentials) can be used to define v and V .

2.2 Calculation of derivatives

Since derivatives are calculated considering matrices PX and QX fixed in an evaluation
point, only vectors v and b should be differentiated:

∂TX (x)

∂x
=

∂v(x)

∂x
· PX +

∂b(x)

∂x
·QX (10)

higher order derivatives are calculated following the same scheme.
Alternative schemes, in which matrices PX and QX are also differentiated were used

without significative improvements in the results, and were discarded because their com-
putational cost is considerably higher.

2.3 Solution of PDE boundary value problems

LOPI is a point collocation method, therefore PDEs are solved in strong form and there
is no need to use integration cells or backgroud meshes as in other meshless methods. As
an example, a solution will be developed for a well-posed elliptic boundary value problem:

Pu(x) = f(x), x ∈ Ω
BNu(x)|ΓN

= sN(x) (11)

BDu(x)|ΓD
= sD(x)
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Here, Ω is a bounded domain in R
n, BD a Dirichlet operator and BN a Neumann or mixed

operator.
Let XN denote an arbitrarily chosen set of N points xα ∈ Ω (nodes):

XN = {x1,x2, . . . ,xN} , xα ∈ Ω

Let IN := {ωα}N
α=1 denote a finite open covering of Ω consisting of N clouds ωα such that

xα ∈ ωα, α = 1, . . . , N constitutes the center of the cloud, and

Ω ⊂
N⋃

α=1

ωα.

After reordering, we can partition the set of nodes XN in the form

XN = {(xβ)|β=1,...M1 ⊂ Ω, (xβ)|β=M1+1,...M2 ⊂ ΓN , (xβ)|β=M2+1,...N ⊂ ΓD}

Let F := R
N be the set of function values f = (fα)

N
α=1 evaluated at nodes {xα}. If G

is a subset of XN , FG is the subspace {(fβ) : xβ ∈ G} and pG : F → FG is the canonical
linear projection.
For every node xα, α = 1, . . . N, let S(α) be the subset of nodes in ωα (the cloud), and

Tα : F →C∞(Rn) the linear interpolating operator defined by

Tα := T̃S(α) ◦ pS(α).

At each cloud the solution will be approximated as

uh(x) = Tα[u](x) =

M2∑

i=1

ui · ϕα
i (x) + Sα

D(x), x ∈ ωα, α = 1, . . . N (12)

where Sα
D(x) =

N∑

i=M2+1

sD(xi) · ϕα
i (x).

Substituting uh(x) into the PDE and using collocation at the nodes, we have the linear
system

M2∑

i=1

ui · Pϕα
i (xα) = f(xα)− PSα

D(xα), α = 1, . . .M1 (13)

M2∑

i=1

ui ·BNϕ
α
i (xα) = sN(xα)−BNS

α
D(xα), α =M1 + 1, . . .M2
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2.4 Boundary conditions

Essential boundary conditions are applied straightforwardly. This is a considerable ad-
vantage compared with other meshless methods based on the use of radial basis functions.
Zuppa and Cardona9 determined the convenience of increasing the number of basis

functions at every Neumann node to impose this type of boundary conditions.
At every node xγ ∈ Sα ∩ ΓN , a basis function ψα

γ(x) is defined using:

ψα
γ(x) =< n(xγ), (x− xγ) > ϕα

γ(x)

where n(xγ) is the normal vector in xγ ∈ ΓN , ψ
α
γ(xβ) = 0 for all xβ ∈ XN and ∂

∂n
ψα

γ (xγ) =

n · ∇ψα
γ (xγ) = 1.

If Sα ∩ ΓN �= ∅, we may improve the approximation by

uh(x) =

M2∑

i=1

ui · ϕα
i (x) +

M2∑

i=M1+1

gi · ψα
i (x) + Sα

D(x), x ∈ ωα, α = 1, . . . N (14)

where Sα
D(x) =

N∑

i=M2+1

sD(xi) · ϕα
i (x). Again, two equations are imposed at every node

xα ∈ ΓN .

M2∑

i=1

ui · Pϕα
i (xα) +

M2∑

i=M1+1

gi · Pψα
i (xα) = f(xα)− PSα

D(xα)

α = 1, . . .M2 (15)
M2∑

i=1

ui ·BNϕ
α
i (xα) +

M2∑

i=M1+1

gi ·BNψ
α
i (xα) = sN(xα)−BNS

α
D(xα),

α =M1 + 1, . . .M2

3 PARAMETERS OF THE METHOD

Several parameters of the method can be tuned in order to improve solutions. We review
next the influence of these parameters in the accuracy of the method. Comparisons were
made analyzing 3 cases (with analytical solution) used in the past6 to compare meshless
methods.
Errors evaluated were:

er∞ =
1

maxβ=1,...M2 |u(xβ)|
max

β=1,...M2

∣
∣(u− uh)(xβ)

∣
∣ (16)

er2 =
1

maxβ=1,...M2 |u(xβ)|

√

1

M2

∑

β=1,...M2

∣
∣(u− uh)(xβ)

∣
∣
2

(17)
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where M2 is the number of points in the discretization.
Model 1: 2D Laplace equation with Dirichlet boundary condition

uxx + uyy = 0, Ω = {(x, y)| 0 < x, y < 1}
u|∂Ω = g(x, y)

Model 2: 2D Poisson equation with mixed boundary conditions

uxx + uyy = −8π2 cos(2πx) sin(2πy), Ω = {(x, y)| 0 < x, y < 1}
u = 0, on y = 0, 1
ux = 0, on x = 0, 1

Model 3: 2D Poisson equation with exponential source

uxx + uyy = f(x, y), Ω = {(x, y)| 0 < x, y < 1}
u|∂Ω = 0

where f(x,y) =
[−2ay(1−y)+(ay(1−x)(1−y)−axy(1−y))2−2ax(1−x)+(ax(1−y)(1−x)−axy(1−x))2]eaxy(1−x)(1−y)

1−ea/16

and the values a = 200 and a = 1000 were used.

3.1 Interpolation function

Several Radial basis functions (RBFs) can be used in the method, and all of them have
a numerical parameter that can be adjusted, producing variations in the results of the
method. We restricted the scope to functions with smooth second order derivatives,
because our aim was the analysis of elliptic problems involving second order derivatives
of the variable.
Zuppa and Cardona9 used the multiquadrics function:

g(x) =
√

1 + cq ‖x‖2 (18)

where cq = k/r2
c , and rc is the cloud radius (maximum distance from the evaluation point

to another point of the cloud).
In this work, we propose the use of a slighty modified multiquadrics:

g(x) =
√

cq + ‖x‖2 (19)

where cq = kr2
c .

Following Lancaster and Salkauskas3 we used also the rotated Gaussian:

g(x) = ecq‖x‖2

(20)

where cq = k/r2
c .
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Figure 1: Error comparison - Model 1
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Figure 2: Error comparison - Model 3 a=200
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Figures 1 and 2 show a comparison of the results obtained using these functions. There
are no appreciable differences using one or another RBF, and only in specific problems
some of them show minor advantages. We conclude that the type of RBF used is less
important than its dilation parameter.
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Figure 3: Influence of cq parameter - Model 3 a=200 - RBF:Rotated gaussian

Analyzing the influence of cq parameter, we could say that better results are found
when the weight of the function is concentrated near the evaluation point. An analysis of
the results obtained with the rotated Gaussian shows that error decreases as we reduce
the k constant, up to a point where a sudden increment in the error is caused by the
ill-conditioning of resulting matrices. This is similar to the results obtained by Zuppa
and Cardona9 using multiquadrics, and also similar to the behavior observed for other
meshless methods by Simonetti and Cardona.7

3.2 Cloud determination

Extensive tests were carried out to determine the best way to define the clouds used for
interpolation at a given point. From a qualitative point of view, for smooth functions and
uniform grids of points, the best results were found using a cloud radius approximately
equal to 2h, where h is the distance between two consecutive points of the grid.
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Figure 4: Influence of cloud determination - Model 2
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Using fast Delaunay triangulation algorithms (see e.g. Calvo et al.2 ) with a quasi-
linear computational cost, a cloud determination method based on the evaluation of neigh-
bors in a Delaunay triangulation is 20% faster than traditional methods (circular ball)
based on computing distances between the evaluation point and the other nodes.
Figures 4 and 5 show a comparison between results using these schemes. In all cases

we used as RBF the multiquadrics with k = 14 in cq calculation. Cloud radius parameter
rc was 1.5 for v1 (first neighbors) and r1 (circular ball) cases, and 2.5 for v2 (second
neighbors) and r2 (circular ball) cases.
The use of clouds with radius near 2h is clearly advantageous. Moreover, small radius

clouds (and use of order 1 reproduction) are not appropiated for Neumann boundaries.
There is only one case where we detected clear advantages for small radius clouds. As

it can be seen in the next section, the use of small radius or first neighbor schemes near
Dirichlet boundaries improves the accuracy of the method. This could be explained in
part because in these nodes second-neighbor clouds become very asymmetric. In next
section we show the results obtained with this scheme.
It can be observed that solutions obtained using circular ball or neighbor methods

are of similar quality in uniform grids, with advantages for the neighbor method in non-
uniform grids. Based on this fact and its advantages in computational cost, we prefer the
neighbor method to construct the clouds.
The neighbor method permits also to use an adaptive scheme to determine the cloud

radius parameter rc used to normalize the RBF. Best results were found using a cloud
radius equal to the maximum distance from the evaluation point to another point in the
cloud rc = max(

∣
∣x− xc

∣
∣).

3.3 Polynomial reproduction order

For analysis of smooth functions, order 2 reproduction gives better results than order 1 re-
production. However, computations are more expensive and many times the improvement
in results is not worth the price of the increment in the computational cost.
As seen in figures 6 and 7, order 2 reproduction is clearly advantageous only in cases

involving Neumann boundaries (like Model 2).

4 POINT DISTRIBUTION REFINEMENT

The original formulation of LOPI produced bad quality results when point distributions
were refined near high-gradient zones, specially in the proximity of Dirichlet boundaries.
Unidimensional and bidimensional models indicated a severe increment in the error

when non-uniform grids were used. This problem was solved in part by using a progressive
grid refinement. However, the problem continued in the vicinity of Dirichlet boundaries.
As seen in fig.11, a successful way to solve this problem was the use of first neighbor clouds
combined with order 1 polynomial reproduction in clouds containing Dirichlet points.
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To evaluate the behavior of LOPI method in refined grids, we compare results for 3
different meshes: an original 121-points uniform mesh, a 535-points refined mesh, and a
576-points uniform mesh.
In the first example, we start using Model 3 (exponential source) with a = 200 in a

11x11 grid (fig.9). In fig.10, after refinement and using the original LOPI formulation,
high errors can be seen near Dirichlet boundaries, so the quality of the solution is poor.
The improvement in the behavior of LOPI using local v1R1 schemes is clear analyzing

fig.11. In this scheme, the errors are of the same order than in an uniform mesh of the
same size (fig.12).

case er2 er∞
first mesh 0.00620 0.04391

refined − original 0.00200 0.00293
refined − new method 0.00030 0.00082
uniformly refined 0.00016 0.00078

Table 1: Model 3 a=200. Computed errors

The behavior of the refined grid is even better when using Model 3 with a = 1000
(a more concentrated source) . In this case, the refined mesh covers not only the high-
gradient zone, but also a small area around it, and refined grid errors (fig.13) are smaller
than those of an uniform grid (fig.14) of the same number of points.
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Figure 9: Initial mesh - Model 3 a=200 - Solution and error
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Figure 13: Refined mesh with new method - Model 3 a=1000 - Solution and error
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case er2 er∞
refined − new method 0.00072 0.00221
uniformly refined 0.00200 0.03220

Table 2: Model 3 a=1000. Computed errors

5 CONCLUSIONS

The LOPI method works remarkably well in uniform grids, presenting several advantages
over competitive methods, as:

• It is “truly meshless”, without need of any explicit or background mesh.

• Since the interpolation satisfies the delta Kronecker property, the implementation
of Dirichlet boundary conditions is trivial.

• Convergence rates, accuracy and computational cost are better than those of many
other meshless methods.

The neighbor method was proved to be the best for cloud determination, and second-
neighbor schemes were the best suited for general cases. However, first-neigbor schemes
should be used near Dirichlet boundaries. A way to calculate good rc parameters for
RBFs was also determined.
The influence of the dilation parameter k (and cq) of Radial Basis Functions was

analized and best results were found using values that concentrate the weight of the
function near the evaluation point, but are also sufficiently conservative to avoid problems
due to ill-conditioning of matrices. This was independent of the type of RBF used.
Other parameters, as reproduction order have a less definite behavior, and could be

selected in a case-by-case basis, depending of the balance between accuracy and compu-
tational cost.
Even when refinement behavior was improved, further work must be done to improve

results using non-uniform grids, specially when high gradients of point density are found.
Applications of LOPI to solve Navier-Stokes equations in incompressible fluid flow will

be subject of future research.
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