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Abstract.  Recently sophisticated vibration monitoring techniques have been available to be 
used in the monitoring and diagnostics of complexes rotating machinery. Among them, can 
relate the artificial intelligence techniques as neural networks, fuzzy logic, expert systems and 
so on. The neural networks are tools that have woken up a lot of interest on researchers in the 
recent years. They let the monitoring on-line of predictive maintenance aiming the 
minimization of the time between the receiving of the information and the diagnosis of the 
problem. This paper shows the ability and feasibility of the application of different 
optimization techniques of neural networks training in the diagnostic of faults inserted in the 
rotating machinery. In the experimental setup are inserted the following faults: defect 
electric, mechanical looseness, unbalance + mechanical looseness and unbalance. Several 
architectures of neural networks implemented with the Matlab software were trained with 
different optimization techniques to provide the best architecture to diagnostic of four faults 
inserted in the experimental setup. Results show that the neural networks can be effectively 
used in the diagnostic of faults inserted in the experimental set-up with a high performance 
and that the Levenberg-Marquardt optimization technique is faster than gradient descent and 
gradient descent with momentum for practical problems. 
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1   INTRODUCTION 
 

The maintenance predictive is a science that use several kinds of data to determine the 
condition of the machine and to predict a fault before it occurs. The aims of maintenance 
predictive are in general, decrease the downtime, lower maintenance costs and improved 
security. For today’s sophisticated systems of machinery, predictive maintenance has become 
the  most reliable method for monitoring and diagnosis of faults. There are many different 
types of methods that may be used, including oil analysis, vibration analysis and temperature 
and pressure monitoring. For many years, vibration analysis has been widely accepted as the 
most reliable method for predicting machinery problems. The vibration signals are used for 
rotating machinery condition monitoring, fault diagnosis and severity estimation. Fault 
detection and diagnosis is generally accepted to occur in three stages1: 

Detection       – has a fault occurred? 
Identification – where is the fault? 
Diagnosis       – why has the fault occurred? 

The importance of detection and diagnosis of faults in machinery has expanded 
considerably in the past decade due to the increased complexity of plant equipment and high 
costs associated with failure and shutdown. Fault recognition normally requires a detailed 
analysis of machinery signals to identify specific fault patterns. Traditionally, this is 
performed through visual inspection by experienced personnel using spectrum analysis or 
associated signal processing methods. However, these methods are usually costly and 
inefficient in the some cases. As an alternative to conventional fault diagnostic methods, 
artificial intelligence techniques are being introduced to assist in fault diagnosis2,3. Among 
them, can relate neural networks, fuzzy logic, expert system and so on. The neural networks 
are tools that have woken up a lot of interest on researchers in the last years. They let the 
monitoring on-line of predictive maintenance aiming the minimization of the time between 
the receiving of the information and the diagnostic of the problem4. There are many 
applications of neural networks in the diagnostic of mechanical faults5-10. 

This work shows the ability and feasibility of the application of different optimization 
techniques of neural networks training in the diagnostic of faults inserted in the rotating 
machinery. The acquisition of data were generated on a laboratory rotor-rig. 
In the experimental setup were inserted the following faults: defect electric, mechanical 
looseness, unbalance + mechanical looseness and unbalance. Several architectures of neural 
networks implemented with the Matlab software were trained with different optimization 
techniques to provide the best architecture to diagnostic of faults inserted in the experimental 
setup. Results show the application of neural networks for faults diagnostic of rotating 
machinery using real data, as well as its theoretical and practical aspects of implementation.  
 
2   NEURAL NETWORKS 
 

Basically, the artificial neural network consists of neurons, simple processing elements, 
which are activated as soon as their inputs exceed certain thresholds. The neurons are 
arranged in layers which are connected so that the signals at the input are propagated through 
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the network to the output11. A neuron is a processing unit of information indispensable for the 
operation of the neural network. The Figure 1 shows the model of the neuron. 
 

Figure 1:  Model of the neuron 
 

The neuron can be represented mathematically as follows:                                                                            
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where, 

jx     : are the input signals; 

kjw   : are the synaptic weights; 

kv     : is the linear combiner output; 
kb     : is the bias; 
(.)  : is the activation function; 
ky     : is the output signal of the neuron. 

 
The bias externally applied in the neuron, have the effect of increase or decrease a liquid 

input of the activation function, when it is positive or negative, respectively. The activation 
functions can be three types: limiar function, piecewise-linear function and sigmoid function.  

A feedforward neural network contains one or more layers12. Three types of layers may 
exist in a neural network: an input layer, an output layer an one or more hidden layers if 
necessary. These networks are named of multilayer perceptron (MLP). In this work we chose 
the MLP because it provides a complex nonlinear mapping between the input and the output 
and is found to be simple to implement. Several techniques for training neural networks are 
available in the literature, the most common of them is backpropagation. The backpropagation 
algorithm consists of two steps through of layers of the network: a forward step, the 
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propagation and a backward step, error back-propagation. In the forward step, one pattern of 
input or signal is propagated through the layers of the network as long as the synaptic weights 
are kept constants. This result of the network output or response due to input pattern is 
subtracted of the desired response and the error is so propagated backward through the 
network. During this step the synaptic weights are updated. In other words, the algorithm 
changes individually the synaptic weights until the goal error pre-determined to be reached by 
network. The goal error is defined through the quadratic mean sum squared error )..( mqe as 
follows: 

                                                     2
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where, ka  is the desired response. 

There are many optimization techniques for neural networks training using the 
backpropagation algorithm. Among them, can relate the gradient descent method, gradient 
descent with momentum, conjugate gradient method (Fletcher-Reeves, Polak-Ribiere), quasi-
Newton method (Broyden-Fletcher-Goldfarb-Shanno - BFGS), Levenberg-Marquardt method 
and so on. It is very difficult to know which training algorithm will be the fastest for a given 
problem. It will depend on many factors, including the complexity of the problem, the number 
of data points in the training set, the number of weights and biases in the network, and the 
error goal. The two first methods are often slow for practical problems. In general, on 
networks which contain up to a few hundred weights the Levenberg-Marquardt algorithm will 
have the fastest convergence. This advantage is especially noticeable if very accurate training 
is required. The quasi-Newton methods are often the next fastest algorithms on networks of 
moderate size. For more details about the optimization techniques for neural networks 
training, see12,13. 
 
3   RESULTS AND DISCUSSION 
 

 This section presents some results obtained through the implementability and training of 
several neural networks architectures with the backpropagation algorithm, using real data as 
network input features. The Matlab Neural Networks Toolbox 3.0 was used for neural 
networks implementability. The real data (patterns) used for training, test test and I II were 
generated in the experimental setup, shown in Figure 2. The experimental setup consists of an 
electric motor 0.5 HP, 110 V AC, one rotor fixed in the motor shaft and supported at both 
ends for two identical rolling element bearings. The faults were inserted in the experimental 
setup separetely, and were collected the vibration signals (velocity) using an accelerometer 
mounted in the right rolling bearing in vertical direction.  
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Figure 2:  Experimental Setup 
 

As follows is described some individual features of each fault type, as well as show a 
spectrum of the measured signal for each fault inserted in the experimental setup. 
Defect electric – This type of fault is further common in rotating machinery and can be caused 
basically by eccentricity of the rotor and unbalance voltage line. In the second case, this 
defect can appear in the spectrum with frequency equal a twice the frequency of the supply 
line and the dominant plane is the radial with low amplitude. The spectrum in this signal 
collected during the stage of data acquisition is shown in Figure 3.  
Mechanical looseness – This type of fault was inserted in the experimental setup by loosening 
one of the four bolts between the electric motor and the basis. The spectrum in these signal 
collected during the stage of data acquisition is shown in Figure 4. 
Vertical unbalance + Mechanical looseness – The unbalance was inserted in the experimental 
setup by addicting a mass of about 7.8 g at any end of the rotor. The mechanical looseness 
appears combined the unbalance. The spectrum in this signal collected during the stage of 
data acquisition is shown in Figure 5.   
Horizontal unbalance – This fault was inserted in the experimental setup by addicting a mass 
of about 2.5 g at any end of the rotor. The spectrum in this signal collected during the stage of 
data acquisition is shown in Figure 6.  
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Figure 3:  Spectrum of Defect Electric 

 
 
 

 
    Figure 4:  Spectrum of Mechanical Looseness 
 

Figure 5:  Spectrum of Vertical Unbalance + 
                     Mechanical Looseness 
 
 

Figure 6: Spectrum of Horizontal Unbalance

 
During the acquisition of the vibration signals (patterns) regarding the first three faults, the 

accelerometer was mounted in the right rolling bearing in the vertical direction, and for the 
fourth fault the accelerometer was mounted in the right rolling bearing in the horizontal 
direction. Eighty such vibration signals were collected, being twenty signals for each of the 
faults inserted. The rotor speed was about 3600 rpm. The sample frequency was of 400 Hz 
and a line frequency of 60 Hz.  

The real data set used for training, test I and test II of the architectures of neural networks 
implemented to diagnostic the four faults inserted in the experimental setup was split of the 
following way: Forty spectrums (patterns) with data set of training of the network (ten 
patterns for each type of fault); twenty patterns with data set of test I (five patterns for each 
type of fault) and twenty patterns with data set of test II (five patterns for each type of fault).  
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As input features of network were chosen the signal amplitudes of each fault (FRF – 
Frequency Response Function) in the frequencies of 1xRPM, 2xRPM, 3xRPM, 4xRPM, 
5xRPM and 6xRPM, where RPM is a rotor speed. As output features of the network were 
used the following target values (activation level): 1000 (defect electric), 0100 (mechanical 
looseness), 0010 (vertical unbalance + mechanical looseness) and   0001 (horizontal 
unbalance). A value equal to 1 in a dimension is a symbol of pressure of a particular fault, 
while a value equal to 0, means its absence. The aim of the application of neural networks in 
the real case is investigating its efficiency and feasibility with tool of faults diagnostic of 
rotating machinery. During the stages of implementability, training, test I and test II of the 
backpropagation neural network were considered the following training features: 

Input and hidden layers : hyperbolic tangent function activation; 
Output layer : linear function activation; 
Goal error : 1e-5. 

 Several architectures of neural networks were trained with different numbers of neurons in 
the input and hidden layers. 

Table 1 shows the results obtained for neural networks training with different optimization 
techniques using an architecture 6x5x4. In all cases it presented a 100% of rate success for set 
data test I and test II. 
 

Table 1 – Comparison of  Optimization Techniques of Neural Networks Training – Real Case. 
 

Optimization 
 Technique 

Epochs 
Number 

Training 
 Time (s) 

Success Rate 
(%) 

Test-I  Data 

Success Rate 
(%) 

Test-II  Data 
Gradient Descent  

99673 
 

1577 
 

100 
 

100 
Gradient Momentum  

64528 
 

867 
 

100 
 

100 
Fletcher-Reeves  

418 
 

13 
 

100 
 

100 
Polak-Ribiere  

294 
 

10 
 

100 
 

100 
quasi-Newton  

182 
 

9 
 

100 
 

100 
Levenberg-Marquardt  

15 
 

3 
 

100 
 

100 

   
The Table 1 gives some convergence times examples for the several algorithms 

(optimization techniques of training) on one particular problem. Ten different test run were 
made for each training algorithm in a Pentium III 800 MHz PC to obtain the average numbers 
shown in the table. The training process using the gradient descent method was carried out 
with learning rate coefficient equal to 0.15 and to gradient descent with momentum method 
equal to 0.9. These values of learning rate coefficient and momentum were kept constant. 

 Other tests were carried out increasing the learning rate coefficient to 0.25 and the results 
showed decreasing of the training time and 100% of rate success for set data test I and test II. 

 During training is important to know that if the learning rate is made too large, the 
algorithm will become unstable and if the learning rate is set too small, the algorithm will take 
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a long time to converge. Generally, learning rate is a small number (0.05-0.9). The other way 
to decrease the convergence time avoiding the unstability, is by adopting a momentum term.  

Momentum allows a network to respond not only to the local gradient, but also to recent 
trends in the error surface. Without momentum a network may get stuck in a shallow local 
minimum. With momentum a network can slide through such a minimum. Momentum term 
can be any number between 0 and 1. When the momentum is 0 the gradient descent with 
momentum method will become gradient descent method.  

Table.1 shows that gradient descent method and gradient descent with momentum were 
slow for practical problem. On the other hand, the conjugate method, quasi-Newton method 
and Levenberg-Marquardt method were extremely fast in the faults diagnostic inserted in the 
experimental setup. The advantage of the Levenberg-Marquardt is that it converges faster 
around the minimum and gives more accurate results. Its only drawback is that it requires 
more memory than the backpropagation with momentum method. Figures 7-10 show 
satisfactory results obtained with the Levenberg-Marquardt method applied in the diagnostic 
of four faults inserted in the experimental setup using neural networks. 
 
 

Figure 7: Comparison Between the Training,     
   Test I and Test II Networks – Defect Electric 

 
 
 

Figure 8:  Comparison Between the Training, 
Test I and Test II Networks - Mechanical 
Looseness. 
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Figure 9: Comparison Between the Training, 
Test I and Test II Networks - Vertical Unbalance 
+ Mechanical Looseness. 

Figure 10: Comparison Between the Training, 
Test I and Test II Networks - Horizontal 
Unbalance. 

 
 
4   CONCLUSIONS        
 

Neural are tools that have woken up a lot interest on researchers in the lately years. They 
let the monitoring on-line of predictive maintenance aiming the minimization of time between 
receiving the information and the diagnostic of the problem. 

Observing the results presented was seen that: from many theoretical and practical aspects 
that are related the one neural network design, the choice of a neural network architecture and 
of its training features not abide rules predefined; the knowledge and experience of the 
designer in regard to problem faced are more important. The definition stage is delicate, well 
involve, to be beyond the choice of neural network architecture, the obtaining of significant 
variables set to problem resolution. This obtaining involves, beyond variables identification 
that are related with the problem, the removing of variables not reliable to process, or whose 
use is not practicable for economical and technical reasons. 

In addition, we observed that the sensitivity and time response of neural network in regard 
the other conventional techniques of faults diagnostic are important features and can be 
assessed and improved during the stages of implementability, training and tests of neural 
network. 

Finally, we showed that using a real case, the ability and feasibility of the application of 
neural networks with tool further efficiency in the faults diagnostic of rotating machinery. 
Results show that neural networks can be effectively used in the diagnostic of faults inserted 
in the experimental setup with a high performance and that the Levenberg-Marquardt 
optimization technique is faster and gives more accurate results for practical problems. 
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