Análisis de Diferentes Aproximaciones para la Energía Potencial Modelada con Orbitales 1S Tipo Slater y Tipo Gaussianos
Abstract
Después de cambios adecuados, el cálculo de la energía potencial Vij(R) modelada utilizando orbitales 1s tipo Slater (STO) y tipo Gaussianos (GTO), puede escribirse como una integral impropia cuyo integrando es el producto de una función fij(w) con la función esférica de Bessel j0(w).
La función fij(w) es a su vez otra integral impropia de una nueva función I(x,w). En una molécula hay (nro. STO)2x nro. GTO cálculos de integrales de este tipo; el costo computacional para evaluar Vij(R) es alto, lo que ameritó el estudio de diferentes formas de cálculo. Una de ellas fue buscar aproximantes para algunas de las funciones involucradas en el cómputo del mencionado cálculo. En
un primer trabajo se estableció un aproximante de la función fij(w)quedando reducido el cálculo a una
sola integral impropia. Establecer el aproximante requiere del cómputo de dos parámetros que están en función de las moléculas involucradas. En un segundo trabajo se demostró que: Existe un único Q que satisface Vij(R)=F(Q), este teorema permite diseñar un cálculo desacoplado que separa las variables del integrando. Actualmente se está estudiando una nueva aproximación donde se propone aproximar el cálculo de la energía potencial Vij(R) por una combinación lineal finita funciones ortogonales de Laguerre. El cómputo de los coeficientes de la combinación lineal requiere del cálculo numérico de una integral impropia. En este trabajo se propone realizar una comparación de las tres aproximaciones obtenidas analizando las ventajas y desventajas de cada una respecto a la precisión, al tiempo de cálculo y cantidad de evaluaciones requeridas en la integración numérica. Se intenta realizar una clasificación que establezca para diferentes moléculas cual es la aproximación adecuada.
La función fij(w) es a su vez otra integral impropia de una nueva función I(x,w). En una molécula hay (nro. STO)2x nro. GTO cálculos de integrales de este tipo; el costo computacional para evaluar Vij(R) es alto, lo que ameritó el estudio de diferentes formas de cálculo. Una de ellas fue buscar aproximantes para algunas de las funciones involucradas en el cómputo del mencionado cálculo. En
un primer trabajo se estableció un aproximante de la función fij(w)quedando reducido el cálculo a una
sola integral impropia. Establecer el aproximante requiere del cómputo de dos parámetros que están en función de las moléculas involucradas. En un segundo trabajo se demostró que: Existe un único Q que satisface Vij(R)=F(Q), este teorema permite diseñar un cálculo desacoplado que separa las variables del integrando. Actualmente se está estudiando una nueva aproximación donde se propone aproximar el cálculo de la energía potencial Vij(R) por una combinación lineal finita funciones ortogonales de Laguerre. El cómputo de los coeficientes de la combinación lineal requiere del cálculo numérico de una integral impropia. En este trabajo se propone realizar una comparación de las tres aproximaciones obtenidas analizando las ventajas y desventajas de cada una respecto a la precisión, al tiempo de cálculo y cantidad de evaluaciones requeridas en la integración numérica. Se intenta realizar una clasificación que establezca para diferentes moléculas cual es la aproximación adecuada.
Full Text:
PDFAsociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)santafe-conicet.gov.ar
ISSN 2591-3522