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Abstract. We construct approximate solutions to Inverse Problems associated to equations of the form

Af = g where A is an integral operator. For a given f , the Forward Problem consists in calculating

its image through A, while the Inverse Problem looks for f for a given g. In order to solve the Inverse

Problem we project the data into finite dimensional subspaces of wavelets in the context of a multireso-

lution analysis and solve the Foward Problem for each element of the basis by means of a Galerkin-type

scheme. From these computations, we can accurately build a solution to the Inverse Problem based on

properties of the chosen wavelets and suitable hyphotesis on the operator. We present examples related

to fractional calculus.
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1 INTRODUCTION

We consider Inverse Problems (IP) associated to equations of the form

Af(x) =

∫

R

h(x, ω)f̂(ω)eiωxdω = g(x), x ∈ R (1)

with f̂ is the Fourier transform of f ∈ L2(R) and the kernel h is a bounded and Lipschitz

continuous function with fast decay.

If we consider k(x, y) =
∫
R
h(x, ω)eiω(x−y)dω, we can express the operator as

Af(x) =

∫

R

k(x, y)f(y)dy (2)

(see Kress (2014)).

In addition, if we suppose that the kernel h is symmetric in ω, i.e., h(x, ω) = h(x,−ω), and

verifies |h(x, ω)| ≤ M

(1+|x|)
1+ε
2 (1+|ω|)

1+ε
2

, M > 0, ε > 0, we can assure that A : L2(R) →

L2(R).
For a given f , the Forward Problem (FP) associated to (1) consists in calculating its image g

through A, while the IP looks for f for a given g. In the last decades decomposition methods

were proposed to solve problems associated to integral operators (A. Cohen and Reiβ (2004),

Dicken and Maaβ (2006), Donoho (1995)) and several techniques based on Wavelet Galerkin

Methods and Wavelet Vaguelet Decomposition were developed. In (Serrano et al. (2014a))

and (Serrano et al. (2014b)) we studied the IP when A is a pseudo-differential operator. Under

appropriate hypothesis on the kernel, the inverse of each element of a selected basis is calculated

approximately. Discretization techniques were also developed.

In this work we construct approximate solutions to the IP associated to integral equations of

the form (1). We choose an appropriate band limited wavelet basis, {ψjk, k, j ∈ Z }, associated

to a Multiresolution Analysis (MRA) where, for each integer j, Wj denotes the wavelet space

that naturally corresponds to a two side-band frequency set Ωj (Walnut (2002), Mallat (2009))

and project the data g in finite dimensional wavelet subspaces. We solve first the FP calculating

the image of each element of the basis. We recover the coefficients of the decomposition of f
in those subspaces by means of a Galerkin scheme. Based on regularty assumptions on h and

properties of the wavelets, the algebraic equations can be solved accurately and the solution to

the IP on each level j is derived. The resulting scheme is simple and efficient.

In the next section we briefly describe the wavelet basis and the associated MRA. In Section

3 considerations on the data are stated and the approximate solution to the IP is developed in

detail. Examples are introduced in Section 4. Finally we present some conclusions.

2 THE WAVELET BASIS

A wavelet is an oscillating function, well localized in both time and frequency domains. For

special selection of the mother wavelet ψ the family {ψjk(x) = 2j/2 ψ(2jx − k), j, k ∈ Z },
is an orthonormal basis of L2(R), associated to a hierarchical structure of the space, i.e., a

sequence of nested scale-subspaces Vj , called MRA (see Walnut (2002), Mallat (2009)) such

that L2(R) =
⊕

j∈ Z
Wj =

⊕
j≥nWj + Vn, for any n ∈ Z.

For our purpose we choose a smooth, infinitely oscillating mother wavelet with fast decay

ψ ∈ S , the Schwartz class, well localized in both, time and frequency domain (see Meyer

(1990)). Its spectrum |ψ̂(2−jω) | is supported on the two-sided band

Ωj =
{
ω : 2j(π − α) ≤ |ω| ≤ 2j+1(π + α)

}
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for some 0 < α ≤ π/3 . Figure 1 right and left, show the graph of ψ and |ψ̂| respectively. There

Figure 1: Mother wavelet for α = π/4 and |ψ̂| for ω ≥ 0

also exists φ ∈ V0 such that {φ(x− k), k ∈ Z} is an orthonormal basis of V0.
Let Wj = span{ψjk, k ∈ Z} and VJ =

⊕
j<J Wj , the wavelet and the scales subspaces.

Each family
{
φJn(x) = 2J/2φ(2Jx− n), n ∈ Z

}
is an orthonomal basis of VJ .

For any signal s ∈ L2(R), we denote by Qjs and Pjs their orthogonal projections on Wj

and Vj , respectively. Then, the following representation holds

s(x) =
∑

j∈Z

Qjs(x) = PJs(x) +
∑

j≥J

Qjs(x) =
∑

n∈Z

〈s, φJn〉φJn(x) +
∑

j≥J

∑

k∈Z

〈s, ψjk〉ψjk(x)

for any index J . We remark that Q̂js is supported on Ωj and P̂Js on ∪j≤JΩj .

The properties of ψ ensure uniform convergence in eachWj . In addition, since ψ is infinitely

oscillating, it has nulled moments
∫
R
xnψ(x) dx = 0, ∀n ∈ N0, and the same occurs to its

polynomials components.

The design of this basis and the implementation algorithm based on the Fast Fourier Trans-

form have been developed by the authors in (Serrano et al. (2012)).

3 APPROXIMATE SOLUTIONS TO THE IP

3.1 The data

We suppose that g(x) =
∑J

j=0 gj(x) + r with ||r||2 < ǫ‖g‖2 ∼= 0, J ∈ N and

gj(x) =
∑

k∈Z

cjkψjk(x) ∈ Wj

where cjk = 〈g, ψjk〉 are the wavelet coefficients.

If the data is a sampled function, a previous interpolation process must be carried out, in an

adequate VJ , disregarding the low frequency components, i.e., P̂Jg is nearly zero.
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We denote by g̃j the truncated projection of the data in Wj ,

g̃j(x) =
∑

k∈Kj

cjkψjk(x) (3)

where Kj ⊂ Z, |Kj| = κj <∞, satisfying
∑

k/∈Kj
| 〈g, ψjk〉 |

2 < ǫ||gj||
2 with ǫ ∼= 0.

3.2 The approximated solution to the IP

Let

f(x) =
∑

j∈Z

∑

k∈Z

bjkψjk(x) (4)

and vjk the images of the wavelet basis through the operator, i.e., Aψjk = vjk, k ∈ Kj

vjk(x) =

∫

Ωj

h(xj, ω)ψ̂jk(ω) e
iωx dω. (5)

Then, from (4)

Af(x) =
∑

j∈Z

∑

k∈Z

bjkvjk(x) =
∑

j′∈Z

∑

k′∈Z

cj′k′ψj′k′(x) = g(x). (6)

For each 0 ≤ j ≤ J , we consider that A(Wj) ∼= Wj , if this is not the case, we can pro-

ceed analogously considering an appropriate union of wavelet subsets. Regarding the truncated

projection of the data, we restrict ourselves to Kj . Then, for m ∈ Kj , we obtain the normal

equations

〈
∑

l∈Kj

bklvjl, ψjm

〉
=

∑

l∈Kj

bkl 〈vjl, ψjm〉 = cjm, k ∈ Kj. (7)

We build the Grammian-type matrix M j ∈ R
κj × R

κj that contains the inner products

M j
lm = 〈vjl, ψjm〉 , (8)

and look for the vector of coefficients satisfying

M j
b
j
k = c

j
k, k ∈ Kj (9)

where b
j
k = (bjk)k∈Kj

and c
j
k = (cjk)k∈Kj

.

Then, ideally, we have to invert M j , find the vectors b
j
k for each j and construct the approx-

imate solution f̃ ∼= f ,

f̃(x) =
∑

0≤j≤J

f̃j(x) =
∑

0≤j≤J

∑

k∈Kj

bjkψjk(x). (10)

Note that it is not actually necessary to calculate vjk, only the matrix M j is needed. Since it

depends only on the operator A and the wavelet basis, we can calculate it previously.

In the next subsection we developed a numerical approximation scheme to compute M j that

involves simple calculations.
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3.3 The matrix M j

In order to calculate the elements of M j we need to integrate over Ωj to obtain vjk in (5) and

afterwards on x over R to build M j (8). However, based on regularity hypothesis on the kernel

h and properties of the wavelets, we can accurately approximate these integrals as follows.

We consider that the kernel h(x, ω) is symmetric in ω and well localized on Ijk = 2−j[k, k+
1], then for x in a neighbourhood of Ijk we have :

h(x, ω) ∼= h(xjk, ω). (11)

In addition, there existN ∈ N and a net of frequencies such that the following representation

holds

h(xjk, ω) = α0,k + 2α1,k cos(ω/2
j) + · · ·+ 2αN,k cos(Nω/2

j) + ǫ(ω), (12)

where ǫ(ω) is an error that is small for large N.
The coefficients αl,k for 0 ≤ l ≤ N can be computed accurately from the values of h in the

net.

Then, from (5), (11) and (12), we have

vjk(x) ∼=

∫

Ωj

(
α0,k + 2α1,k cos(ω/2

j) + · · ·+ 2αN,k cos(Nω/2
j)
)
ψ̂jk(ω) e

iωx dω.

We observe that, for 1 ≤ n ≤ N

2αn,k cos(nω/2
j)ψ̂jk(ω) = αn,k

(
e−inω/2j + einω/2

j
)
ψ̂jk(ω)

= αn,k

(
e−inω/2j + einω/2

j
)
|ψ̂j(ω)|e

(k+1/2)/2j

= αn,k

(
ψ̂j(k−n)(ω) + ψ̂j(k+n)(ω)

)
,

then

vjk(x) ∼= 2πα0,kψjk(x) + 2πα1,k−1ψj(k−1)(x) + 2πα1,k+1ψj(k+1)(x) + · · · .

Finally, we can approximate for 0 ≤ m ≤ N

〈vjk, ψjm〉 ∼= 2παm,k. (13)

The inner products are zero for m > N .

Thus, the matrix M j is diagonal dominant. From (9), we obtain the coefficients b
j
k of f̃j ,

(see (10)).

The accuracy of the the proposed approximation scheme can be improved since the errors

introduced rely on the hypothesis on the localization of the h (see (11)) and on the computation

of the coefficients αl,k in (12).

3.4 Approximation errors

For the class of integral operators considered in this work, we have proposed an approxima-

tion scheme that introduces different kind of errors.

• In order to calculate b
j

k, we have assumed that A(Wj) ∼= Wj . If this is not the case, we

can proceed analogously considering an appropriate union of wavelet subsets.
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• On each level j, we only consider a finite set of integers, k ∈ Kj ⊂ Z, introducing an

error that can be controlled. We do not consider the low frequency components.

• When we calculate the elements of M j an approximation is performed. Its accuracy is

assured by simmetry and localization hypothesis on h, and localization of the chosen

wavelet basis in both time and frequency domains.

4 EXAMPLES

4.1 Estimate accuracy

For two operators with kernels (see Figure 2)

h1(x, ω) = |ω|0.4

h2(x, ω) =
1

1 + 2|x|0.5 + |ω|0.4
,

we illustarte the accuracy of the approximation formula proposed in (13) and the matrix M j .

Figure 2: Kernels h1(x, ω) = |ω|0.4 (above) and h2(x, ω) =
1

1+2|x|0.5+|ω|0.4 (below)

In Figure 3 we show the plot of the function v3,0 associated with h1 (not depending on x)

together with the plot of the wavelet ψ3,0 and v3,0, verifying that v3,0 ∼= 2πψ3,0h1(ω3) with

ω3 = (3π/2)23.
We generate a few functions vjk associated with h2, j = 3 and k = 0, 5, 15. We compare the

plots of the wavelet ψ3,0 and v3,0 . Once more, we observe that, v3,0 ∼= 2πψ3,0h2(x3,0, ω3) with

ω3 = (3π/2)23 and x3,0 = (1/2)/23 (see Figure 4).
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Figure 3: Functions v3,0 (green) and 2π(1.5π8)0.4ψ3,0 (dotted line)

Figure 4: Functions v3,0 (blue), v3,5 (green), v3,15 (cyan) and 2πh2(x3,15, 1.5π8)ψ3,0 (dotted line)

Regarding the matrix M j , we remark that we do not need to calculate vjk since what we ac-

tually need are the values in (13). In Figure 5 we observe that the matrix are diagonal dominant,

as expected.

Figure 5: Matrix M3 for h1 (above) and h2 (below)

Mecánica Computacional Vol XXXIV, págs. 3383-3394 (2016) 3389

Copyright © 2016 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



4.2 Approximation scheme

The whole proposed approximation scheme is implemented in the following example.

We construct a solution to IP associated to the operator with regular kernel

h3(x, ω) =
1

(1 + 3|x|0.5 + |ω|)0.5
, |x| < 4.

We choose the function data g as the image through A of the sampled function

f(x) = e−x2/2(sin(8πx) + sin(4πx)).

Both plots of f and g are displayed in Figure 6.

Figure 6: Functions f (above) and g (below)

Wavelet analysis indicates that the energy of the data g is concentrated in the subspaces

W1,W2 and W3, since levels j = 1, 2, 3 summarize the 10.84%, 55.96% and 33.20% of it, (see

Table 1).

levelj energy frequencies

5 0.0000 [100.5, 201.0]

4 0.0000 [50.2, 100.5 ]

3 0.3320 [25.1, 50.2 ]

2 0.5596 [12.5, 25.1]

1 0.1084 [6.28, 12.5]

0 0.0000 [3.14, 6.28]

Table 1: Energy distribution of g

Similarly for f, the energy is concentrated in the subspaces W1,W2 and W3, (see Table 2).

In this case, A(∪3
j=1Wj) ⊂ ∪3

j=1Wj.
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level j energy frequencies

5 0.0000 [100.5, 201.0]

4 0.0000 [50.2, 100.5 ]

3 0.4835 [25.1, 50.2 ]

2 0.4558 [12.5, 25.1]

1 0.0607 [6.28, 12.5]

0 0.0000 [3.14, 6.28]

Table 2: Energy distribution of f

In Figures 7, 8 and 9 we observe the diagonal dominant matrix M j , j = 1, 2, 3 and their

inverse.

Figure 7: Matrix M3 for h3 (above) and its inverse (below)

Figure 8: Matrix M2 for h3 (above) and its inverse (below)
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Figure 9: Matrix M1 for h3 (above) and its inverse (below)

In order to illustrate the procedure, we exhibit in Figure 10, the coefficients cjk of gj and bjk
of f̃j , respectively.

Figure 10: Coefficients of gj (left) and f̃j , j = 1, 2, 3 (right), (from below to above)

Finally, the sum of the reconstruction components
∑3

j=1 f̃j , i.e., the approximate solution

to the IP obtained with the proposed methodology is displayed in Figure 11, along with the

projections of the real solution
∑3

j=1 fj .
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Figure 11:
∑3

j=1
f̃j (above) vs

∑3

j=1
fj (below)

5 CONCLUSIONS

In this work we have constructed approximate solutions to Inverse Problem Af = g associ-

ated to integral operators A with regular kernel h. It consists in finding f for a given g.

For a fixed j, we first choose an appropriate wavelet basis {ψjk, k ∈ Z }, and project the

data g into adequate wavelet subspaces, g̃j =
∑

k∈Kj
cjkψjk. Afterwards we look for the images

vjk of the basis, Aψjk = vjk. If f =
∑

j,k∈Z bjkψjk, we calculate the vector coefficients b
j
k

inverting a Grammian type matrix M j . Finally, on each level 0 ≤ j ≤ J , f̃j =
∑

k∈Kj
bjkψjk

and f̃ =
∑

0≤j≤J f̃j is the proposed approximate solution to the IP.

We observe that we only need to calculate the coefficients of the data and the elements of the

matrix to obtain the vector b
j

k and build the solution component f̃j .
Since we work with band limited wavelets, we regularized the problem when performing the

projections to compact subsets in the frequency domain. Approximation errors are introduced

when we truncate the projection of the data on each level j and in the calculation of the coeffi-

cients of fj . Based on the properties of the operator and of the chosen wavelet basis, both errors

can be handled and controlled.

The proposed approximation scheme is implemented on an example.

We remark that there is no general theory for integral equations of this type and only approx-

imate solutions can be obtained. Ad-hoc approximation schemes must be developed taking into

account particular properties of the kernel of the operator.
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