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Abstract. Blood diseases affect one or several parts of it and prevent blood to accomplish its function. 

These diseases could be chronic or acute. For example, leukemia is a type of blood cancer that starts 

in the bone marrow where blood cells are formed. Also, leukemia can be classified as lymphocytic or 

myelogenous. In some types of leukemia, it could be affected by any of the different precursors of the 

cell lines of the bone marrow as for example myeloid, erythroid or megakaryocytic precursors. 

Besides, iron deficiency anemia is one of the most common anemia and is caused by a deficiency in 

iron present in the hemoglobin of red blood cells (RBCs). Ektacytometry techniques quantify RBCs 

deformability by measuring the elongation of suspended RBCs subjected to shear stress. A patented 

optical system denominated Erythrocyte Rheometer was used to evaluate the viscoelastic properties of 

RBCs from patients with leukemia and iron deficiency anemia by ektacytometry. RBCs from healthy 

donors were used as a control. From the diffraction patterns of several of millions of RBCs (subjected 

to shear stress), photometric series were obtained. On this temporal series, it was evaluated non-lineal 

quantifiers in order to study fluctuations in the elongations of the RBCs. The dynamics of the cells 

were analyzed with the coefficient of non-linear correlation proposed by May and Sugihara and with 

the Hurst Exponent. Patterns of different behavior were observed in the utilized quantifiers. The 

patterns observed for the leukemia patients showed a chaotic behavior while patterns from iron 

deficiency anemia showed a random behavior like the control RBCs. The proposed quantifiers proved 

to be useful in the discernment of different pathologies associated with RBCs. Besides, the results 

shed light in the utilization of non-linear quantifiers on photometrically recorded series from 

erythrocytes subjected to shear stress for a quantitative characterization of the behavior of the system 

under study. 
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1 INTRODUCTION 

Red blood cells (RBCs) are the most abundant cells in the blood and its primary function 

is the transport of oxygen and carbon dioxide. In order to carry out this task, they have to 

travel through capillaries of diameters smaller than themselves. This requires that the RBCs 

must be deformed in a greater extent. Due to these mechanical properties and their abundance, 

RBCs are also major determinants for the rheological behavior of blood.  

Leukemia is a cancer of the bone marrow and blood. The four main types of leukemia are 

acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, and 

chronic lymphocytic leukemia (CLL). Acute leukemia is a rapidly progressive disease that 

affects cells that have not fully developed. These cells can not perform their normal functions. 

Chronic leukemia tends to progress more slowly, and patients have a greater number of 

mature cells. In general, these more mature cells can perform some of their normal functions. 

In the case of acute myeloid leukemia, the cancerous change begins in a cell in the bone 

marrow that normally forms certain blood cells, that is, RBCs, some types of white blood cells 

and platelets. Thus, this type of leukemia can arise from degenerated RBCs, which also may 

present morphological alterations (Miller et. al. 2005). With respect to CLL, it has not yet 

been possible to establish a link between this disease and the morphological alteration of 

RBCs. However, it has been shown that many serious chronic diseases can damage the 

erythrocyte membrane by hyperthermia, and generate some degree of mechanical injury of the 

RBCs when crossing injured tissues (Zerga, 2004). 

Iron-deficiency anemia (IDA) is an anemia caused by a lack of iron. Anemia is defined as 

a decrease in the number of RBCs or the amount of hemoglobin in the blood. When onset is 

slow, symptoms are often vague, including feeling tired, weakness, shortness of breath, or 

poor ability to exercise. Anemia that comes on quickly often has greater symptoms, including 

confusion, feeling like one is going to pass out, and increased thirst. Recently, it was reported 

that the decrease of RBCs during anemia can be attributed to an increase in membrane 

stiffness and a decrease in deformability, which decreases the ability of the RBCs to pass 

through the spleen without being removed (Nagababu et al. 2008). 

Whatever the case, both diseases could modify the rheological behavior of blood since they 

could produce possible changes in the morphology of RBCs.  In this work, a feasible 

diagnostic tool, based on the Brownian characterization of the nonlinear behavior of RBCs 

from CLL or IDA patients was developed. The new method consists of the use of the May-

Sugihara Coefficient and the Hurst Exponent for the characterization of the RBCs samples. 

This technique enables the discrimination of different groups according to their nature.  

In order to develop our proposal, the manifestation of the complex behavior related to 

RBCs is described through a range of new concepts: the techniques of Time Delay 

Coordinates suggested by Takens (1981), False Nearest Neighbors proposed by Abarbanel et 

al. (1993) and the method proposed by May and Sugihara (1990). The latter provides an 

estimation of the number of degrees of freedom and also makes inferences about the 

dynamical nature of the system under study. This inference can be carried out by examining 

the correlation coefficient between predicted and observed time series through different 

prediction intervals, depending on the embedding dimension of the attractor as long as the 

photometric time series is identified as chaotic. Lastly, Hurst Exponent would allow 

characterizing ordinary Brownian motion and fractional Brownian motion of the systems from 

photometrically recorded series. 
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The method requires obtaining time series that account for the alteration of the erythrocyte 

membrane of the RBCs. For this, photometrically time series of cells under shear stress from 

RBCs samples of patients with CLL or IDA were recorded. The time series were obtained by 

Ektacytometry technique using a device developed and patented by our Group of Applied 

Optics at Biology from IFIR (CONICET-UNR) (Riquelme et al. 2005). The same procedure 

was carried out for healthy patients (RBCs control) for comparative purposes. 

2 MATERIALS AND METHODS 

2.1 Red blood cells (RBCs) 

Human venous blood samples of red cells Group 0 were anticoagulated with Na2EDTA and 

maintained at 4 ºC until they were processed. Whole blood was centrifuged at 800 g during 10 

minutes. Then, plasma and buffer coat were removed. The remaining RBCs were washed 

three times with phosphate buffer saline (PBS, pH 7.4) at 25 ºC.  

Erythrocyte suspensions were obtained according to the experimental procedure described 

above and following the International Committee for Standardization on Hematology.  

2.2 Data acquisition 

The Erythrocyte Rheometer based on Ektacytometry, was used to dada acquisition. In this 

instrument, light diffraction under Fraunhofer theory conditions may be applied to obtain 

quantitative information of diffracting particles such as suspended RBCs. Cells in dilute 

suspension under shear stress take a three axial ellipsoidal shape having the major axis in the 

same direction towards the shear field direction. A laser beam that transverse perpendicularly 

a thin layer of cells suspension is diffracted producing a Fraunhofer diffraction pattern that is 

either circular when the cells are at rest or elliptical when they become deformed by a shear 

stress field. 

Normal RBCs being at rest can be considered as a monodisperse population having discoid 

shapes with almost the same size. RBCs suspension is placed between two flint glass disks, 

and a driving motor allows the rotation of the lower disk. Data is stored for being numerically 

processing. Based on previous reports, the time series obtained were splitted in two parts: the 

first one describes the stage when the erythrocytes are subjected to shear stress and the second 

one describes the stage when the erythrocytes recover their circular shape for being at rest. 

An example of the time series for the creep process and for a healthy control sample 

obtained by the equipment, as well as the Fraunhofer diffraction patterns for rest and under 

shear stress, is shown in Fig.1. 

 

Figure 1. Flowchart of Erythrocyte Rheometer and a typical time series from the creep process of 
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erythrocytes under shear stress and Fraunhofer diffraction patterns for rest and under shear stress. 

2.3 Software 

The algorithms for estimate the quantifiers were developed in two different programming 

languages, R (2016) and MATLAB (2013); and are at disposal if required. 

3 DATA ANALYSIS 

3.1 The percentage of False Nearest Neighbors.  

A particular time series, such as the dataset depicted in Fig. 1, can be connected in time, 

leading to an orbit or trajectory that represents the evolution of the system. The set of orbits 

starting from all possible initial conditions generates a flow in the state space and can be used 

to visualize the attractor of the system. However, limitations of such representation of the 

system include the conditions that every trajectory must be non-intersecting and that different 

trajectories originating from different initial conditions must not overlap or occupy the same 

space. This arises from the fact that a point in phase space representing the state of the system 

is considered to encode all the information about the system, including both its past and future 

history, which is a deterministic system must be unique.  

In this phase space, points of an orbit acquire neighbors. These neighbors provide 

information on how phase space neighborhoods evolve over time. In an embedding dimension 

E, that is too small to unfold the attractor, not all the points that are close to each other will be 

actual neighbors due to the dynamics. Some of them will be far from each other and simply 

appear as neighbors because the geometric structure of the attractor has been projected onto a 

smaller space. Abarbanel and co-workers evaluated neighbors with increasing dimensions 

until no false neighbors remained (Abarbanel et al. 1993). They developed a specific method 

from geometrical considerations, known as percentage of false nearest neighbors (%FNN). 

The proposed method looks for a value for the minimum embedding dimension that correctly 

analyzes the dynamics of the process.  

In D dimension each vector Y(k) will have a nearest neighbor YNN(k), in the sense of the 

minimum Euclidean distance between them: 
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From Eqs. (1-2), if RD is the minimum distance between Y(k) and YNN(k), then RD+1 must 

be smaller than RD, but if it is bigger, then the attractor in RD is not unfolded and those points 

appeared near because the real attractor has been projected on the smallest space on delay 

coordinates. This could be checked for increasing embedding dimensions until the %FNN is 

less than 1%. The calculation of the %FNN could be used as a test on measurements from the 
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dynamical system in order to find the minimum embedding dimension E in which the attractor 

of the system is completely unfolded. 

3.2 May and Sugihara Correlation Coefficient 

First, the smallest embedding dimension E in which every trajectory must be non-

intersecting was chosen, as obtained with the %FNN procedure. Time delay coordinates 

technique, suggested by Takens, was employed in order to generate the phase space portraiture 

for the system dynamic (Takens, 1981).  

A convenient way to reconstruct the dynamics of the process is to unfold the time series by 

successively higher shifts. The shifts were defined as integer multiples of a fixed lag τ, where 
τ is an integer number defined as τ = m ∆t (in our work, m = 1). Taking N equidistant points 
for creep and recovery process, we are able to define the phase space of all the possible states 

of the system variables under study. 

 For our time series, each sequence for which we wish to make a prediction is now to be 

regarded as an E-dimensional point, that is a vector, comprising the present value and the E-1 

previous values each separated by one lag time.  

May and Sugihara propose then that all nearby E-dimensional points are placed in the state 

space. For each of these points, a minimal neighborhood is defined to be such that the 

predicted one (Y*) is contained within the smallest simplex. A simplex containing E+1 

vertices is the smallest simplex that can contain an E-dimensional point as an inside one. The 

lower dimensional simplex of nearest neighbors was used for points on the boundary. 

 Prediction is now obtained by projecting the domain of the simplex into its range, which is 

done by keeping track of where the points in the simplex end up after s time steps. To obtain 

the predicted value, we compute where the original predicted one has moved within the range 

of this simplex. This is a nonparametric method, which uses no prior information about the 

model used to generate the series; the only information is the output itself. It should apply to 

any stationary or quasi-ergodic dynamic process, including chaos.  

Plotting the conventional statistical coefficient correlation <Cs(Y,Y*)> between predicted 

Y* and observed values Y as a function of s. If one obtains a decrease in the correlation 

coefficients with increasing prediction time then this is a characteristic feature of chaos. This 

property is noteworthy because it indicates a simple way to differentiate additive noise from 

deterministic chaos. The former is uncorrelated, regardless of how far or close into the future 

one tries to project the simplex, whereas predictions with the latter will tend to deteriorate as 

one tries to forecast further into the future.  

Our predictions were generated by using the first half of the data series to construct an 

ensemble of points in an E-dimensional state space. This first half will be the library of past 

patterns; they were done avoiding the first 500 data points corresponding to the stationary 

process. Then the resulting information was used to depict the remaining second half values in 

the series.  

3.3 Hurst Exponent 

In a classical non-differentiable trajectory or, more generally, ordinary Brownian motion, 

past increments in displacement are uncorrelated with future increments, that is, the system 

has no memory. In a correlated random walk, or more generally, fractional Brownian motion, 

past increments in displacement are correlated with future increments, at least for the first 

steps of the process, hence the system has memory.  

Hurst Exponent for a time series provides a measure of whether it is a pure white noise 
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random process or has underlying trends. Dynamic process, that might naively characterized 

with purely white noise, sometimes turn out to exhibit Hurst Exponent statistics for long 

memory process, i.e., colored noise. A long memory process is a process where past events 

have a decaying effect on future ones. But those are forgotten as time moves forward.  

A time dependent function X(t), as ours photometrically recorded time series, is said to be 

self-affine if fluctuations in different scales can be rescaled in order to obtained the original 

signal, to be statistical equivalent to the rescaled version (Simonsen, 2003): 

                                                   )t(x
H

)t(X                      (3) 

In Eq. (3),  is a positive number and H is the Hurst exponent, which quantifies the degree of 

correlation (positive or negative) when the increments are Y(ti)=y(ti+1)–y(ti).  

It can be shown that for a process satisfying the self-affine property, the correlation 

function <Cs(Y,Y*)> between Y(t) of the real series and Y*(t) for the predicted one, can be 

best illustrated by considering the correlation coefficient for Brownian motion, proposed by 

Feder (1988), which is given by the expression: 
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From Eq. (4), if H = 0.5, the increments in displacement are statistically independent, and 

then <Cs(Y,Y*)> = 0. This is the result expected for ordinary Brownian motion. For H > 0.5 

past and future increments are positively correlated, this type of behavior is known as 

persistent. For H < 0.5 past and future increments are negatively correlated, this type of 

behavior is known as anti-persistent. In both cases <Cs(Y,Y*)>  0. 

In order to obtain the correlation coefficient between the photometric time series of the 

second half of our series Y(t), and the theoretical Y*(t), we applied the Sugihara and May 

methodology. We correlated Y*(t), obtained from the series corresponding to the creep 

process, X(t), with Y(t) which is the second half, for the different steps increments s. For 

further details, please read the references (May and Sugihara, 1990; Feder, 1988).  

4 RESULTS AND DISCUSSION 

The random behavior is, as one expects, unpredictable, thus the question of randomness in 

a data series is more than a question of mixtures of determinism and randomness. Since noise 

is present in all physical measurements, determining if randomness is inherent in the system 

dynamics or in the measurement process is not always straightforward. In the study of the 

deformability of RBCs through the analysis of photometric series, much of what has just been 

said is present, which makes the use of nonlinear quantifiers a valuable contribution to 

unraveling what type of sample one is analyzing. Certainly, the use of a nonlinear quantifier is 

not intended to replace conventional analysis, but to provide further insights into the 

underlying RBCs deformation mechanisms.  

At the start, over to all the series, the first differences (xt+1 – xt) were applied in order to 

whiten the series, that is, to reduce the autocorrelation, and also to diminish any signals 

associated with simple cycles. In order to reconstruct the process dynamics, the technique of 

delay coordinates suggested by Takens and co-workers was used, and the Abarbanel method of 

false nearest neighbors was applied to finding the phase space dimension, as such explained in 

Section 3.1. Thus, the %FNN for seven embedding dimensions, one higher than the other, 

were obtained. For all the samples it was found that when E = 6 the %FNN was less than 1%, 
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and therefore the system attractor should completely unfold. Thus, E = 6 was the chosen 

embedding dimension for our analysis. The results obtained are shown in Fig. 2. 

 

 

 Fig. 2. Embedding dimension E vs. %FNN. Inset: %FNN for E = 5, 6 and 7. 

Fig. 3 shows the outputs from the May and Sugihara analysis. Results showed differences 

comparing RBCs samples from CLL and IDA patients. During the first three steps, IDA 

samples generated lower correlations than the CLL ones (Fig. 3-B). However, some 

independence between the correlation and the step process could appear because we are 

dealing with uncorrelated additive noise. 

 

Fig. 3. A) Correlation coefficient versus steps (s) for RBCs from CLL (red triangle) and IDA patients (black 

circle and dashed line). B) Same figure, highlighting the first three steps. 

The accuracy of the prediction for IDA samples, as measured by <Cs(Y,Y*)>, shows no 

systematic dependence on s, between experimental and theoretical ones. By contrast, for CLL 

samples, the <Cs(Y,Y*)> does not decrease with increasing s, which is characteristic of a 

chaotic dynamic. 
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Samples Hurst (s=1)* Hurst (s=2)* 

Healthy controls 0.98 ± 0.01 0.46 ± 0.04 

Leukemia (CLL) 0.98 ± 0.03 0.63 ± 0.07 

Anemia (IDA) 0.98 ± 0.02 0.49 ± 0.02 

Table 1: Mean Hurst Exponent for all the RBCs samples (*: mean H ± SD). 

 

The mean Hurst exponents for all the RBCs samples (including healthy controls) at s = 1 

and s = 2 are shown in Table 1. If the value of Hurst Exponent for healthy controls is observed 

(for s = 2), the dynamics of this system could be classified as an ordinary Brownian motion 

(i.e., H ca. 0.5), where statistical properties such as invariance or range are not related at all. 

Interestingly, the same goes for IDA RBCs samples (H = 0.49 ± 0.02), which would indicate 

that deformation that this disease would produce on the RBCs (Nagababu et al. 2008) would 

not have a direct effect on the rheological properties of the blood. On the other hand, on CLL 

RBCs samples, the system dynamic could be characterized as a persistent fractional Brownian 

motion (H > 0.5), which is fractal in a statistical sense, that is, statistical properties are related 

over different time scales by way of a power law. In other words, the stress process gives us 

some special information of the relaxation one in a short time and the series exhibit a great 

sensitivity to initial conditions. 

5 CONCLUSIONS 

The proposed quantifiers proved to be useful in the discernment of different pathologies 

associated with RBCs. Besides, for a quantitative characterization of the behavior of the 

system under study the results shed light in the utilization of non-linear quantifiers on 

photometrical recorded series from erythrocytes subjected to shear stress. 

Understanding the behavior of biological systems and how it is altered under pathological 

conditions is a promising way of diagnosis. Specifically, we have linked photometrical 

recorded time series of erythrocytes under shear stress with increasing embedding dimension 

E for the dynamical process and Hurts Exponent, to be able to compare and understand the 

changes on three different erythrocytes populations: healthy donor samples, patients with 

leukemia, and patients with iron-deficiency anemia. Different patterns were observed for the 

different populations studied. While in the case of leukemia the patterns showed a chaotic 

behavior (with deterministic component), in the case of the samples corresponding to iron-

deficiency anemia patients, the behavior was random as well as the healthy control samples. 
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