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Abstract. The trajectory of a ball impacting with an angle on a rigid boundary is recorded with a high-

speed camera and the dynamics is reconstructed in a computer. Several experiments are carried out in

order to obtain statistical distributions of the trajectory. On the other hand, a simple model of a viscoelas-

tic material ball simulates the experiment. If the values of the constitutive parameters (e.g. elastic and

viscous modulus, friction coefficient, etc.) in the numerical model are correct, the simulated dynamics

and the experimental data must be comparable. In this study, the Bayesian inference is applied to identify

two constitutive parameters (the friction and viscous coefficients) through statistical measures. Further-

more and once the distributions of the stochastic parameters are available, a propagation of uncertainties

is carried out to verify the experimental results and also, to obtain information about other variables of

interest which experimental determination is not straightforward, such as contact forces, time of contact,

etc.
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1 INTRODUCTION

The computational modeling of a material behavior is based on equations which represent

the response of the material to forces, temperature, strains, etc. The constitutive equations

involve parameters that vary from a specific material to other and they are usually estimated

through the use of experimental tests, under assumptions that simplify the estimation (e.g. low

strain rate, plain stress, plain strain, etc.). In particular, viscoelastic materials show a strain-rate

dependent behavior and several models and parameters to represent them are available in the

literature. As is known, there are also many different tests used to determine these viscoelastic

parameters (Larson, 1999). On the other hand, linear viscoelastic, surface friction and plasticity

theories have contributed to address deformations and stresses when inelastic bodies are in

contact. The works as Popov (2010); Johnson (1987) can be cited among the books including

modern approaches in this field. In more specific cases dealing with contact between very hard

and soft bodies, a discussion of how the resulting friction force depends on the nature of the

substrate surface roughness and on the sliding velocity can be seen in Nikoofard et al. (2014);

Palasantzas (2003). When the substrate surface has a self-affine fractal structure, it can be found

in the comprehensive work of Persson (Persson, 2001).

There are different strategies to solve an inverse problem in order to estimate parameters, for

example the least squares method, as in Vuoristo et al. (2000) where the algorithm of Levenberg-

Marquadt was used to adjust data from a dynamic compression test to a spring-dashpot model

for viscoelasticity. Sometimes, when the inverse problem is ill-conditioned, the use of gradient

search methods is not always useful to solve the problem. Heuristic techniques such as neural

networks and genetic algorithms are successfully employed to overcome the difficulties. For

instance, the crack detection in structural elements can be addressed using neutral networks

(Rosales et al., 2009) and genetic algorithms (Buezas et al., 2011). Bayesian inference (Kaipio

and Somersalo, 2006) is traditionally used for model selection, as in Beck and Yuen (2004);

Toni et al. (2009); Ritto and Nunes (2015), but it can also useful for parameter estimation (Toni

et al., 2009; Ritto, 2014).

In the present paper, the problem of a viscoelastic ball impacting on a rigid body is studied

and the Bayesian framework is implemented to determine the viscoelastic and friction parame-

ters. Based on the outcomes of an elementary experimental setup, the statistics are input as data

in the numerical representation of a non-linear mechanical model. The objective of this paper

is to answer the question: Is it possible to measure constitutive parameters indirectly using a

Bayesian approach? In order to respond to this question, a simple model (as simple as possible)

of the ball is proposed. This model is stated in terms of ordinary differential equations which

can be integrated numerically with a smaller amount of CPU time than the expected in solving

a continuum mechanical scheme.

This paper is organized as follows. Section 2 presents the simple nonlinear mechanical

model and its numerical implementation, the contact constraint and the friction effect of the

oblique collision of the body. In Section 3, the experimental setup for measuring the kinematics

of a real ball impacting on a rigid wall is described. Next, Section 4 depicts the identification

procedure based on the Bayes theorem. Then, numerical results of the Bayesian procedure and

the estimation of other dynamic quantities using the adjusted model are discussed in Section 5.

Finally, the concluding remarks are included in Section 6.
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Figure 1: Scheme of the bouncing ball and the interaction forces.

2 MECHANICAL MODEL

The physical approach is straightforward. The Newton’s equations of a viscoelastic ball,

bouncing over a rigid plane are stated and solved.

The interaction force between the sphere and the plane are modeled with two terms, i.e.

the elastic part using the Hertz results and a term of viscosity. As the ball touches the rigid

boundary, a dry frictional Coulomb provokes a spin. The motion involves three degrees of

freedom. A scheme of the bouncing ball problem is shown in Figure 1.

The equations of motion when the ball hits the rigid are:

Ff = mẍ; FC + Fv = mÿ; T = Iα̈

where m is the mass and r is the radius of the sphere. The interaction force (elastic part, Hertz

model) is

FC =

{

−4

3

√
r E
1−ν2

y
3

2 if y ≤ 0

0 if y > 0
. (1)

where E is the Modulus of Elasticity, ν is the Poisson ratio (Lifshitz et al., 1962), Ff =
−µFC(ẋ + rα̇) is the friction force (at the contact point), x and y are the coordinates of the

ball (center of mass), ẍ and ÿ are the acceleration components, I is the moment of inertia of the

sphere, T = r × F = rFC is the moment due by friction force, Fv = −ηẏ is the viscous force

(acting only when the ball is in contact) and α̈ is the angular acceleration. Therefore, the fric-

tion force Ff , the viscous force Fv and the torque T depend on the contact force FC . The body

is a rigid sphere that interacts with a rigid plane with a nonlinear, viscoelastic, Kelvin–Voigt

material-like force. The equations of motion (1) together with the initial conditions constitute a

nonlinear system of Ordinary Differential Equations (ODEs) that can be integrated numerically.

Here, a Runge-Kutta method (Lasagni, 1988) is employed.

3 PHYSICAL EXPERIMENT

Several experiments were carried out to determine the probability distributions of the dynam-

ics. The tests consisted in making a commercial polybutadiene ball with diameter of 25,6 mm

impact against an inclined plane of hard wood (considered as a rigid body for modeling pur-

poses). The experimental setup consists in two inclined planes. The upper plane includes a track

to ensure that the ball always falls from the same starting point and following the same path.

The lower board is placed so that the plane of rotation of the impacting ball is perpendicular to

the plane of motion before and after the impact.
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Figure 2: Superposition of frames extracted from the Tracker Software (Brown, 2015). The

axes origin is the ball center of mass.

A total of 55 impact tests were performed and each one was recorded using a high-speed

camera Casio Exilim ex-zr100 at 1000 frames per second. The camera was located in front

of the impact plane in order to avoid the recorded trajectory to be affected by the rotation of

the ball. The resulting videos were analyzed using the software Tracker (Brown, 2015). This

program allows to measure distances after the input of a reference length along the horizontal

axis. Thus, once the object is referenced, the automatic tracking of its motion is possible (see

Figure 2). The coordinate points of the tracked object are registered for each time and the

different characteristics of the trajectory can be measured. In particular, the variables of interest

in the present study are the incidence angle (θi) and speed (vi) and the deflection angle (θf ) and

speed (vf ).

The results of this series of 55 experiments were used to generate histograms for the re-

bound data (the incidence data were kept approximately constant since the height of the starting

point and the angle of the inclined plane did not change). The obtained histograms are de-

picted in Figure 3a. Using these histograms, it is possible to estimate the probability density

functions (PDFs) for both variables using MATLAB’s ksdensity function (MATLAB, 2010;

Scrucca, 2001). The resulting PDFs are shown in Figure 3b. The correlation between the vari-

ables was calculated using the Pearson correlation coefficient (Benesty et al., 2009), obtaining

a value near to zero which means that a joint probability function ρexp(v, θ) = ρ1(v) · ρ2(θ) can

be assumed.

4 INFERENCE OF THE CONSTITUTIVE PARAMETERS USING A BAYESIAN AP-

PROACH

Bayesian methods offer the opportunity to integrate data obtained from experiments and

prior knowledge in order to derive an estimate of a posterior probability distribution of certain

variables. In this work and in order to identify the two constitutive parameters Θ = (µ, η) in

Eqs.(1,1), we propose the use of a Bayesian inference strategy (Kaipio and Somersalo, 2006) in

which some parameters are assumed as random variables. Prior PDFs for these variables, based

on prior knowledge, are introduced in the analysis, see for instance Toni et al. (2009); Ritto

(2014). Then, the PDFs are updated with the data obtained from the experiment. The technique

is described next.

By hypothesis, the dynamics of the collision depends on the material properties. That is, the

final generalized coordinates v and θ are functions of the constitutive parameters Θ. As men-

tioned before, the two variables were measured several times through a controlled experiment

resulting in values vf and θf ; the data vector is D = (vf , θf ). Then, an experimental PDF was

generated for ρexp(vf , θf ) = ρexp(D). At the same time, given the constitutive parameters Θ,
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(a)

(b)

Figure 3: Experimental data. Left plots: Deflection speed (vf ); right plots: Deflection angle

(θf ). a) Histograms; b) PDFs obtained using the ksdensity function (Scrucca, 2001).

the integration of the system Eq. (1) gives us the general dynamics of the ball and, in particular,

the final quantities vf num and θf num (or Dnum = (vf num, θf num)). Therefore, the values of

Dnum depend on Θ, i.e.

Dnum = h(Θ) (2)

Now, using the PDF ρexp(D) given by the experiment with these numerical values, we pro-

pose the conditional probability function:

ρ(Dnum | Θ) = ρexp(Dnum) = ρexp(h(Θ)) (3)

that is, the probability density to get Dnum given Θ (usually known as the likelihood function).

On the other hand, we assume a complete uncertainty of the parameters Θ, i.e. a uniform

prior PDF of Θ: ρprior(Θ) = uniform, limited to the interval µ0 ≤ µ ≤ µl and η0 ≤ η ≤ ηl.
Using the Bayes formula, we can compute the posterior PDF of Θ

ρpost(Θ | D) =
ρ(Dnum | Θ)ρprior(Θ)

PT (D)
(4)

where ρpost(Θ | D) is the PDF of the vector of interest Θ given data D, i.e. the updated PDF,

and PT (D) is the total probability of data D, which gives the normalization constant:

PT (D) =

∫

ρ(Dnum | Θ)ρprior(Θ) dΘ (5)

where dΘ = dµdη. This integral yields a normalization constant that makes the PDF norm

equal to one. The ultimate goal is to get a PDF for every parameter of the vector Θ, i.e. a set of

functions:

ρη(η | D) and ρµ(µ | D) (6)
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Figure 4: Posterior joint probability function ρpost(Θ|D). a) Surface function; b) contours.

and since the function ρpost(Θ | D) is the joint PDF of the two parameters, we use the marginal

PDFs to find each probability function, as follows,

ρη(η | D) =
∫

ρpost(Θ | D) dµ
ρµ(µ | D) =

∫

ρpost(Θ | D) dη
(7)

The process to compute Eq.(5) can demand a large amount of CPU time. To speed up the nu-

merical simulation, the Markov Chain Monte Carlo (MCMC)/ Metropolis–Hastings algorithm

(Gamerman and Lopes, 2006) can be efficiently used to find the posterior distribution. These

MCMC strategies are very attractive since the knowledge of the normalization constant be-

comes unnecessary and more, due to the simple implementation to get both the joint probability

and the marginal integrals.

5 RESULTS

Once the experimental data described in Section 3 were obtained, the numeric model was

run with the same geometrical, initial conditions and density values of the sphere under study.

The equations of motion Eq. (1) was solved in Matlab using a Runge-Kutta method (Lasagni,

1988).

5.1 Parameter estimation

As explained in Section 4 and once the parameters Θ are chosen, the whole dynamics of

the impact can be reconstructed. However, it is important to remind that the values of Θ are

originally unknown. In order to estimate their values, it is necessary to calculate the marginal

probability integrals given by Eq. (7). The computation of these integrals implies the evalua-

tion of the dynamic model of the impact at as many points (in the Θ space) as necessary to get

acceptable values for the PDFs. In order to reduce the CPU time, the Metropolis-Hastings algo-

rithm is implemented. In particular, the Matlab Metropolis-Hasting function was employed with

15000 samples, a symmetric proposal function, and the lag and burning parameters assumed to

be 3 and 100, respectively. Figure 4 shows the posterior joint probability function ρpost(Θ | D)
after a uniform prior PDF of Θ: ρ(Θ) = uniform limited to the interval 0 ≤ µ ≤ 0.5 and

0 ≤ η ≤ 5 kg/s, is assumed.

A comparison between the prior and the posterior marginal probability density functions for

the variables considered in the analysis is presented in Figure 5. The prior is represented by

dashes horizontal lines and the posterior is shown with full lines. It can be seen that the data

used to update the prior added a great amount of information. Moreover, an uncertainty of 0.5 in

the coefficient of friction is updated to 0.02 with 90% of confidence in the posterior PDF. In the

case of viscosity coefficient, we get a 0.2 kg/s with the same confidence. The 90% confidence

F.S. BUEZAS, N. FOCHESATTO, W. TUCKART, M.B. ROSALES646

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 5: Posterior marginal probability density functions for the variables . The prior is in

dashes lines and the posterior is shown in uniform lines.

Figure 6: Uncertainty Quantification. Trajectory of the mass center of the ball in the collision

problem. Curves of a subset of values of the Markov chain.

intervals of these parameters are:

µ90% = 0.16± 0.02; η90% = (1.35± 0.2)kg/s. (8)

Now that the posterior PDF is computed, the inverse problem is completed and the hypothesis

of this article: It is possible to indirectly measure the constitutive parameters of a rubber body

knowing only the output angle and velocity of bouncing ball, is true (in a statistical sense). The

statistical values can be used to estimate other variables through computational simulations, i.e.

a propagation of uncertainties. An illustration is included in the next subsection.

5.2 Stochastic simulation and direct problem

The physical experiment of Section 3 gave us the statistical (PDF) response of the kinematics

of a bouncing ball. With this information, in the previous subsection we estimated the PDF of

two unknown parameters, i.e. the friction coefficient µ and the viscosity η using the Bayes

formula. In order to calculate the marginal PDF of these two parameters, a Markov Chain

Monte Carlo (MCMC) algorithm was implemented. This Markov chain constitute a set of pairs

of values compatible with the joint PDF illustrated in Figure 7. We can reconstruct the stochastic

solution of the mechanical problem integrating the equations of motion (1) for each pair of the

Markov chain. Figure 6 shows the resulting trajectory of the ball during the collision using a

subset of the Markov chain. In this figure, the dispersion in the trajectory beyond the interaction

with the rigid semi-space can be observed.

Since the complete solution of eq.(1) is available, it is possible evaluate the sensibility of

the model to the stochastic parameters by a propagation of the uncertainties.The aim is to get

the statistic of the bouncing velocity and angle to verify the procedure. Thus, the experiment is
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Figure 7: Uncertainty quantification. Reconstruction of the PDFs of the variables measured

in the experiment. Full and dashed lines represent the numerical and experimental results,

respectively. a) PDFs of the bouncing velocity; b) PDFs of the bouncing angle.

Figure 8: Uncertainty quantification. Statistical realizations of the forces involved in the inter-

action. a) Normal force; b) friction force.

numerically simulated in a direct problem using the estimated PDFs of the two parameters (fric-

tion and viscosity coefficients) as input data. The experimental results are thus reconstructed as

a result of stochastic simulation. The PDFs of bouncing velocity and angle for both approaches

(numerical and experimental) are shown in Figure 7.

Furthermore, some quantities of interest sometimes difficult to be measured directly, can be

calculated with the propagation of the uncertainties derived of the Bayesian inference. From the

numerical model and after introducing the PDFs of the parameters {µ, η}, the friction and nor-

mal forces can be reproduced. Figure 8 a) depicts some realizations of the normal force during

the collision. Both the shape and magnitudes are conserved and this variable does not seem to

be sensitive to the random variability of the friction and viscous coefficients. On the other hand,

the friction force (Figure 8 b) shape is preserved but its maximum magnitude exhibits strong

variations.

Finally, the time of contact was analyzed from a statistical viewpoint. The resulting PDF is

shown in Figure 9. It is observed that the range of the time of contact is very small and the

variations are in the order of thousandths of a second. A bimodality is present in PDF.

6 CONCLUSIONS

The principal objective of this work is to solve the inverse problem using a Bayesian algo-

rithm in order to estimate two constitutive parameters from the limited kinematic information

collected in an experiment. This technique has two great advantages. One is the possibility of
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Figure 9: Uncertainty quantification. PDF of the time of contact.

performing a robust optimization and obtaining a probability distribution of the sought param-

eters and the other, the inference of constitutive parameters from indirect experiment data. The

study addressed the collision of a viscoelastic ball with a rigid surface. Experimental tests were

carried out and the trajectories of the mass center of the ball were recorded with a high-speed

camera. Then, the data (rebound velocity and angle) were processed with a dedicated software.

Using this information, the likelihood functions were then derived under certain hypotheses.

After the application of the Bayesian inference, the best estimate of the constitutive parameters

(friction and viscosity coefficients) were obtained after indirect measurements using a digital

hi-speed recorder, given the priors of the sought parameters.

In order to verify the proposed methodology, the original experiment was numerically recon-

structed with a stochastic simulation propagating the uncertainties. The agreement in the results

was found to be more than acceptable. More, using the stochastic constitutive parameters, other

quantities of interest were calculated. Thus, the normal and friction forces were found and the

results indicate that the first one is not significantly affected by the variation of the random coef-

ficients. On the other hand, the friction force magnitude is sensitive to the parameters variation.

Also, the time of contact exhibits some particular features such as a bimodality in its PDF.

The methodology shows to provide a useful tool to solve an inverse problem with a stochastic

approach which allows to reference the results in a statistic frame starting from indirect and

sparse information.

At present, a more complex model within the mechanics of solids is being implemented to

compare the results from the present elementary model. Also, the validation of the friction

parameter value is being tackled through a physical friction experiment. The new results will

be presented in the congress.
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