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Abstract. Smooth Decomposition (SD) is a multivariate data or statistical analysis method usedto
identify normal modes, natural frequencies and energy partition of systems. The method is based on
the knowledge of the system response (spatial data field) to a random excitation. It should be noted that
only the output data of the system is needed for the identification. The excitation has to satisfy some
properties, normally well met by a white noise, but doesn’t need to be measured. This turns the method
the ideal way to deal with the identification of systems under ambient excitations,as wind or waves
for instance, which can be hard to compute or to describe. The output dataof the system response is
then projected into a basis and an optimization problem is created. It consists of finding the basis that
gives the maximum variance of the displacement-projection and the minimum variance of the velocity-
projection. This optimization problem can then be written as an eigenvalue problem with the covariance
matrices of the displacement field, and of the corresponding velocity field. Solving this problem the
system is identified and no further considerations and approximations are needed. From the eigenvalues,
the “energy” participation of each normal mode in the response during the simulation or the experimental
test can be evaluated. Since this information is crucial for non-linear systems identification, the Smooth
Decomposition method can be used to identify linear and non-linear systems. The objective of the paper
is to explain the Smooth Decomposition method and to present an application of it. First we present the
method and show how the results of SD can be interpreted. Then, an application of SD on a simulated
numerical model of a cantilever beam is performed and discussed to understand how SD can be a nice
tool for modal analysis.
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1 INTRODUCTION

The Smooth Decomposition (SD) is a statistical analysis technique for finding structures
in an ensemble of spatially distributed data such that the vector of generalized displacement
not only keeps the maximum possible variance but also the velocity field is as smooth in time
as possible. Closely related with the SD are the dual smooth modes used in the framework
of oblique projection to expand a random response of a system. The concept of dual mode
with the associated decomposition defines a tool that transforms the SD in an efficient modal
analysis tool. This method of identification can be used for linear and nonlinear systems and
uses only output data provide the excitation satisfies some properties normally met by a well
chosen random excitation, as a white noise, for example.

The main properties of the SD are discussed and some optimality characteristics of the ex-
pansion are deduced. The parameters of the SD (using the dualsmooth modes and the smooth
values) give access to modal parameters of a linear system interms of mode shapes, natural
frequencies, and modal energy partition. This part is a remarkable improvement with respect to
the standard modal analysis methods. This novel modal analysis of a linear system is illustrated
by examples.

In this paper we will consider a numerical model of a cantilever beam which is excited by
a random force at the free edge of the beam. The first case consists of the identification and
modal analysis of this beam considering that there is no modal damping in order to show the
power of the SD. Then we take into account the modal damping ofthe beam and we will show
that SD is still a good method for low levels of damping. In previous paper we have worked on
discrete systems and on systems with unobserved degree(s) of freedom which was a first step
to continuous systems. It is explained how the SD can be applied to identify the parameters of
a continuous system discretized by finite element method.

It is interesting to stress out that this is a new method, not yet compared with the meth-
ods known in the literature as Operational Modal Analysis (OMA). So far the only association
between SD and OMA is the fact that both methods use only output signals for the identifi-
cation and they require random excitation. However the theories are different. SD is a type
of Karhunen-Loève Decomposition, using correlations and projections in the modes whereas
OMA uses the controllability matrix and correlations of themeasured signals that are not nec-
essarily the state of the system.

2 DESCRIPTION OF THE SMOOTH DECOMPOSITION

In this Section of the paper we present the basis of the smoothdecomposition method based
on the following worksBellizzi, S. and Sampaio, R.(2012c), Bellizzi, S. and Sampaio, R.(2013),
Sampaio, R. and Bellizzi, S.(2011), Sampaio, R. and Bellizzi, S.(2014b,c). As consequence,
the discussion is biased as remarked in the paper title. We also compare this method with an-
other well known method called the “Karhunen-Loève Decomposition (KLD)” or the “Proper
Orthogonal Decomposition (POD)” used to analyze random data asBellizzi, S. and Sampaio, R.
(2009b), Bellizzi, S. and Sampaio, R.(2009a), Bellizzi, S. and Sampaio, R.(2006).

The main objective of KLD, or POD, consists in finding the basis that will be, with a fixed
number of elements, the best representation of the initial field. All those methods have been
used for another interesting aspect which is the model orderreduction as it is presented in
Bellizzi, S. and Sampaio, R.(2012a) andBellizzi, S. and Sampaio, R.(2012b) for the SD and
in Ritto, T. and Buezas, F.S. and Sampaio, R.(2012) for the POD, or Karhunen-Loève Decom-
position.
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KLD (or POD) and SD are based on the projection of the data fieldsuch as the generalized
displacement vector has the maximum variance in order to be sure that all the modes we are
looking for are excited. Indeed, the bigger is the variance of the displacement vector, the higher
is the probability of a mode to be excited. The SD method is a bit different because we also
consider the derivative of this generalized displacement vector, the velocity field. The objective
is to find the basis that gives the maximum variance for the generalized displacement vector and
the minimum variance for the velocity vector (in order to keep the motion as smooth as possible
in time).

2.1 Decomposition Principle

First, let us describe the data field used in this method. We consider the sampled scalar field
X(t) formed of random values (in the matrix form) as a function of the timet (t ∈ R). This
field is such asX(t) ∈ R

n×m wheren represents the different instants andm represents the
spacial points where we measure the information. The displacement field is considered as a
stationary second-order process with zero-mean value thatadmits a time derivative which is
also a stationary zero-mean value process.

The central point of this method is to find a linear projections such as:
YX(t) = projφX(t) = X(t)φ, (1) YẊ(t) = projφẊ(t) = Ẋ(t)φ, (2)

whereYX(t) ∈ R
n×m, YẊ(t) ∈ R

n×m andφ ∈ R
m×m (representing a projection basis). Now,

the objective of this method is to find this projection basis such as it keeps the maximum vari-
ance for the projection of the original fieldX(t) (the generalized displacement field) and the
smallest projection of the velocity field in order to keep thevariation in time as smooth as
possible. The objective is to find themax

φ
||YX(t)||

2 andmin
φ

||YẊ(t)||
2 which is exactly as

maximizingf(φ) with:

f(φ) =
||YX(t)||

2

||YẊ(t)||
2
=

||X(t)φ||2

||Ẋ(t)φ||2
. (3)

Now we can simplify this ratio using the auto-correlation matricesde Cursi, E.S. and Sampaio, R.
(2015) RXX andRẊẊ, respectively, for the displacement field (X(t) ∈ R

n×m) and the velocity
field (Ẋ(t) ∈ R

n×m). Indeed, we can write:

||Xφ||2 = E

(

(Xφ)T Xφ
)

= φT
E
(

XTX
)

φ = φTRXXφ, (4)

||Ẋφ||2 = E

(

(

Ẋφ
)T

Ẋφ
)

= φT
E

(

Ẋ
T
Ẋ
)

φ = φTRẊẊφ, (5)

whereE(�) is the expected value. Finally we get this new expression forf(φ) (keeping in
mind thatn is the number of time samples which is rather big and thus can be simplified in the
ratio in the case of the derivative method used do not conserve the same number of samples as
in the original field) and we want to find:

max
φ

{

f(φ) =
φTRXXφ

φTRẊẊφ

}

. (6)

In order to find the maximum off(φ) we can express its derivative with respect toφ, called
∇f(φ), such as:

∇f(φ) =
∂f(φ)

∂φ
=

2
(

φTRẊẊφ
)

RXXφ− 2
(

φTRXXφ
)

RẊẊφ

(φTRẊẊφ)
2

, (7)
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and then find when∇f(φ) vanishes. We can also find this maximum using Lagrange multiples.
In both cases we will find the following eigenvalue problem asthe expression of the two initial
propositions. The problem is equivalent to:

RXXφk = λkRẊẊφk, k = 1, ...,m. (8)

Solving this eigenvalue problem we get the eigenvalues, theλk’s, and the eigenvectors, the
φk’s, such as theλk’s are in ascending order (λ1 > λ2 > . . . > λm). There is a relation between
the auto-correlation of the velocity and the correlation ofthe acceleration and the displacement
such asRẊẊ = −RẌX . From this relation we get the following eigenvalue problemwhich leads
to the same results.

RXXφk = −λkRẌXφk, k = 1, ...,m. (9)

Usingφk, it is possible to define

ψk = RXXφk. (10)

At this step we are able to find several parameters from a displacement field of a mechani-
cal system. We can identify theλk (the Smooth Value - SV), theφk (Smooth Mode - SM)
and theψk (Dual Smooth Mode - DSM). Depending on the characteristics of the system, we
can interpret these parameters differently, as seen in the contributions of Bellizzi and Sampaio
(Bellizzi, S. and Sampaio, R.(2012c), Bellizzi, S. and Sampaio, R.(2013), Sampaio, R. and Bellizzi, S.
(2011), Sampaio, R. and Bellizzi, S.(2014b) andSampaio, R. and Bellizzi, S.(2014c)) and also
in the one of the Farooq and Feeny’s worksFarooq, U. and Feeny, B.F.(2008).

2.2 Expansion Principle

From this decomposition we do have two different bases, the smooth basis calledΦ, formed
with theφk’s, and the smooth dual basis, calledΨ, formed with theψk’s (for k = 1, ...,m
with m as the number of measuring points). Now we propose to use these two bases to find the
smooth expansion ofX(t) and its dual smooth expansion.

2.2.1 Smooth expansion in theΦ-basis

Considering the expansion ofX(t) in theΦ-basis we can writeX(t) =
∑m

k=1
ξk(t)φ

T
k , which

can be simplified using a normalization conditionφT
k RẊẊφk = 1 and usingψk. Then, we can

find the Dual Smooth Components (DSC)ξk(t):

ξk(t) =
X(t)ψk

λk
. (11)

2.2.2 Dual smooth expansion in theΨ-basis

Let us consider theΨ-basis to expressX(t). The dual smooth expansion of this field into
this basis can be written asX(t) =

∑m

k=1
χk(t)ψ

T
k . Following the same procedure applied in

the Smooth expansion in theΦ-basis, it is possible to obtain the the Smooth Components (SC)
χk(t):

χk(t) =
X(t)φk

λk
, (12)
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At this step, we can notice an interesting property for the Smooth Components. Let us consider
the square of it and develop to the following form:

E(χ2

k(t)) = φ
T
k RXXφk. (13)

Now considering the original eigenvalue problem formulated in Eq.(8) we can write:

E
(

χ2

k(t)
)

= λk. (14)

2.3 Energetic point of view

An interesting thing with SD is the energetic study that can be made with this method. Let
us call the “energy” of the fieldX(t) the expressionE

(

||X(t)||2
)

that can be reduced (using the
dual smooth expansion). From the dual smooth expansion we get:

X(t) =
m
∑

k=1

χk(t)ψ
T
k ⇒ ||X(t)||2 =

m
∑

k=1

∣

∣

∣

∣χk(t)ψ
T
k

∣

∣

∣

∣

2

. (15)

The expression of the “energy” can then be simplified using the previous formulation and we
get:

E
(

||X(t)||2
)

= E

(

m
∑

k=1

∣

∣

∣

∣χk(t)ψ
T
k

∣

∣

∣

∣

2

)

=
m
∑

k=1

[

E
(

χ2

k(t)
)

E
(

||ψk||
2
)]

. (16)

Simplifying using Eq.(14) we can find the final expression for the “energy” ofX(t) as:

E
(

||X(t)||2
)

=
m
∑

k=1

λk ||ψk||
2
. (17)

Note that, from this formula it is quite easy to find the energycaptured in each mode (the
identified mode with the SD which, sometimes, does not correspond to a physical mode) during
the simulation since the expression:

λi ||ψi||
2

m
∑

k=1

λk ||ψk||
2

, (18)

represents the fraction of energy captured by the modei during the simulation. This value can
be a really good way to verify if a mode has been well excited during a simulation and then if
the estimation of its frequency and mode shape can be validated. Also, this parameter is crucial
for identification of non-linear systems since knowing the energy is essential.

2.4 Modal Assurance Criterion - MAC

In order to evaluate the mode basisΨ found from SD (ΨSD) with respect to the expected ones
we will use the Modal Assurance Criterion, called MAC representation. According to Allemang
Allemang, R.J.(2003), this tool is a good way to verify if modes found from one method (SD
in our case) correspond to modes found by another method (from the initial eigenvalue problem
for us, defined as the modes shapes baseΨEIG). The formulation of this criteria is:

MAC(ΨSD,ΨEIG) =

∣

∣Ψ
H
SDΨEIG

∣

∣

2

(ΨH
SDΨSD) (ΨH

EIGΨEIG)
, (19)
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where the notation�H denotes the complex conjugate transpose of the quantity. Let us note
that for identical modes from two different methods the MAC should give one. However, since
the orthogonality is in relation to the stiffness matrix metric, the MAC value is not null for two
different modes.

3 SMOOTH DECOMPOSITION AS A MODAL ANALYSIS TOOL FOR DISCRETIZED
UNDAMPED SYSTEMS

Any continuous undamped system can be written (thanks to thediscretization by finite el-
ement for instance) in a matrix form of the classical dynamicequation, whereM is the mass
matrix,K is the stiffness,x(t) andẍ(t) represent respectively the generalized displacement and
the acceleration fields of the system. The excitation of the system is represented byf(t).

Mẍ(t) + Kx(t) = f(t). (20)

From Eq.(20) we can write the acceleration as

ẍ(t) = −M−1Kx(t) + M−1f(t). (21)

The modal parameters are found solving the classical eigenvalue problem:

M−1Kψk = ω2

kψk. (22)

where,ω2

k’s are the squares of the natural frequencies of the mechanical system with associated
normal modesψk (results used as reference). First let us remind the initialeigenvalue problem,
given by Eq.(9), and adapt it to our case:

Rxxφk = −λkRẍxφk, k = 1, ...,m. (23)

Then, using Eq.(21) and the cross-covariance definition, we can write:

Rxxφk = −λkE
[

ẍ(t)xT (t)
]

φk

= −λkE
[(

−M−1KxT (t) + M−1f(t)
)

xT (t)
]

φk

= λkM−1KE
[

x(t)xT (t)
]

φk − λkM−1
E
[

f(t)xT (t)
]

φk

= λkM−1KR xxφk − λkM−1

✚
✚❃
0

Rfxφk. (24)

Then, as the response and the forcing are not correlated at the same time instantt (see later in
this paper) and zero-mean value signals, also using the definition of the auto-covariance, we can
write (reorganizing):

M−1KR xxφk =
1

λk
Rxxφk. (25)

The eigenvalue problems given by Eq. (22) and (25) correspond to same mechanical system,
thus we get the following equivalence:

M−1Kψk = ω2

kψk ⇐⇒ M−1KR xxφk =
1

λk
Rxxφk (26)

Thanks to Eq.(26) we get the following interpretation of the parameters of a linear undamped
system:

{

ω2

k = 1

λk

,

ψk = Rxxφk.
(27)
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3.1 Correlation between random force and displacement

In this section we will rapidly show why the term with the correlation between the force and
the displacement is equal to zero in Eq.(24). First, let us consider a forcef(t) and the associated
response of a systemx(t). The correlation between the forcef at the instantu and the response
at the instants is:

Rfx(u, s) = E [f(u)x(s)]

= E

[

f(u)

∫ s

−∞

h(v)f(s− v)dv

]

= E

[
∫ s

−∞

h(v)f(u)f(s− v)dv

]

=

∫ s

−∞

h(v)Rff (u, s− v)dv. (28)

In Eq.(28), the functionh(v) is the response of the system to an impulse. Then, considering the
force is stationary we can proceed with:

Rfx(u, s) =

∫ s

−∞

h(v)Rff (s− v − u)dv. (29)

Even though the integrand depends ons − u, for smalls, Rfx(u, s) is a function ofs as it
enters in the limit of the integral. Now, consideringh(t) does not diverge fort −→ ∞, which
means that the system is stable, and, considering thatu, s −→ ∞, one can show thatRfx(u, s)
approaches a simple dependence ons − u. Now, an interesting point consists in considering
the delay the response needs to become stationary. The delaydirectly depends on the damping
of the system (indeed, the higher is the damping, the faster the signal reaches stationarity). For
undamped cases, the number of samples has to be big enough to ensure stationarity. Then,
the response of the system approaches stationarity whens −→ ∞, we can define the variable
τ = s− u and get:

Rfx(u, s) = Rfx(s− u)

= Rfx(τ)

=

∫

∞

−∞

h(v)Rff (τ − v)dv

=

∫

∞

−∞

h(τ − v)Rff (v)dv. (30)

As we have said earlier in this paper, the force is random and assumed to be a white noise
with a frequency range defined in the frequency band

[

−fs
2
; fs

2

]

wherefs is the acquisition
frequency (known from the simulation or the experiment), the auto-correlation of the force is:

Rff (v) =
σ2

f sin (fs v)

fs v
. (31)

In this equation,σ2

f represents the variance of the force (white noise). From theprevious equa-
tions we get:

Rfx(τ) =
σ2

f sin (fs v)

fs v

∫

∞

−∞

h(τ − v)δ(v)dv

=
σ2

f

fs
h(−τ). (32)
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As it is well known, the response functionh(t) to an impulse (applied att = 0) is zero when
t ≤ 0 and oscillating whent > 0. In Eq.(32) we considerh(−τ) then we switch the oscillating
part of the response with the other one (the zero-one). It is important to say that in our cases,
we consider causal mechanical systems then the correlationfor τ < 0 is not relevant (the oscil-
lating part of the function) but the other one (τ ≥ 0 ) is crucial and for this part the function is
zero. Finally, forτ ≥ 0, Rfx(τ) → 0 for a time of simulation or experiment long enough to get
stationarity (the stationarity can be reached faster for damped systems).

In order to show the phenomena let us consider a simple dampedmechanical system with
only one degree of freedom. The system consists of a massM = 10 kg, a springK = 40 kN
and a damperC which will be responsible for two different values of modal damping calledζ
such asζ1 = 0.95% andζ2 = 1.9%. We use a Gaussian white noise for the excitationF (t)
such as its statistics parameters areµF = 0N andσF = 100 N. The acquisition frequency
fs = 500 Hz. For each case of damping, we will show results of the correlation between
the force and the displacement for different numbers of samples which means different time
duration of simulation.

Correlation between force and response - 1Dof
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Figure 1: Comparison between the calculated correlationRfx (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damping
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Figure 2: Comparison (bis) between the calculated correlation Rfx (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damping

R. SAMPAIO, D. FOINY, G. WAGNER, R. LIMA, E. PAGNACCO778

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Correlation between force and response - 1Dof
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Figure 3: Comparison (ter) between the calculated correlation Rfx (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damping

Thanks to the results presented by Figs.1, 2 and3, we can first validate the Eq.(32) and we
can also show that for a number of samples big enough (which means a simulation time also
sufficiently big) the correlation between the force and the response is equal zero if the force is
random forτ ≥ 0 which is the case in Eq.(32). The same conclusion can be reached faster if
we consider the damping of the system as we have said before.

3.2 Application of the method

Let us apply this method to a problem. To illustrate this theory we can observe the cantilever
beam presented in Fig.4. This system has got the following mechanical properties:L = 1 m,
E = 200GPa = 200 × 109 N.m−2, I = 8.33 × 10−10 m4 and ρ = 7850 kg.m−3. The
concentrated force applied at the free end of the beam is assumed to be random withµF = 0 N
andσF = 10 N.

Figure 4: Cantilever beam submitted to random force at the free edge

In order to solve this continuous problem we discretize it byfinite elements. For this dis-
cretization we consider the Euler-Bernoulli theory thus we get two degree of freedom for the
finite element, the deflection calledw(x, t) and the rotation of the transversal section called
θ(x, t).

From the finite element discretization we get the mass and stiffness matrices of the beam
(respectivelyM andK ) and from them we can easily find the natural frequencies and mode
shapes of the system solving the eigenvalue problem defined in Eq. (22). These results are the
reference for the comparison with results we get from SD. In this case we do not consider modal
damping.

Let us now simulate the dynamic response of this system. The simulation is made (by mode
superposition) such as we get a number of samplesNs = 409600 with an acquisition frequency
fs = 1.3 kHz (equivalent to a315s-long simulation). A convergence analysis was made on the
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first natural frequency calculated from the mass and the stiffness matrices. It was verified that a
discretization with five linear elements,Nele = 5 is good enough to get good approximation to
the first natural frequency.

From this simulation we can plot the Power Spectral Density -PSD (S(f)) of the response
using the following number of samples in a blockNb = 8192. Figure5 shows the one-sided
spectral density in HertzG(f) of the vertical displacement at the free edge. Thanks to thisplot
we can see that the response of the system is composed by five modes (since there are five peaks
on the one-sided spectral density of the response). The frequencies were the peaks take place
are then written in the following table.

0 100 200 300 400 500 600 700

Frequence (Hz)

-350

-300

-250

-200

-150

-100

-50

0

G
(f
)

Figure 5: One-sided Power Spectral DensityG(f)

No Frequences (Hz)
f1 8.093
f2 51.10
f3 143.6
f4 283.7
f5 470.8

Table 1: Frequencies of the peaks in the one-
sided Power Spectral Density of the response.

From the response (only vertical displacement calledw(x, t)) of the system excited with the
random forceF (t) we can apply the Smooth Decomposition and identify natural frequencies
and mode shapes and compare them to the expected ones calculated from the mass and stiffness
matrices generated from the finite element discretization.First let us have a look on the natural
frequencies presented in the Table2.

No Freq. EIG (Hz) Freq. SD (Hz) Rel. Error (%)
1 8.1539 8.1537 0.0025
2 51.125 51.124 0.0015
3 143.59 143.59 0.0024
4 283.67 283.66 0.0015
5 470.81 470.82 0.0013

Table 2: Comparison of natural frequencies from SD and the ones calculated from the mass and stiffness matrices.

We can also compare the mode shapes of the five first modes of thesystem and their corre-
spondence through the MAC representation to get a better idea of our results (see Fig.6).

This example shows how SD can be used as a modal analysis tool for linear undamped
systems.
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Figure 6: Left: Mode shapes comparison / Right: MAC between the EIG-resolution modes and the SD ones

4 SMOOTH DECOMPOSITION FOR GENERAL SYSTEMS

4.1 Interpretation of the method

In this part we will consider damped systems. This consideration is closer to real mechanical
systems which can be formulated thanks to the dynamics equation:

MẌ + CẊ + KX + A(X) = F, (33)

whereM , K andC are the mass, the stiffness and the damping matrices of our system.F is the
forcing vector which, in our specific case is not monitored (unknown excitation, characteristic
of the output only methods). The term calledA represents the nonlinearity of our mechanical
system.

As it was shown in the literature (namely Bellizzi and SampaioBellizzi, S. and Sampaio, R.
(2015) and Sampaio, R. and Bellizzi, S.(2014a)), the interpretation for those cases is not as
simple as for the linear ones. Indeed, we cannot find the simple equivalence shown with Eq.(27).
These considerations provide from the statistical linearization method thus they give results for
a linear system. If we apply these equivalences, given by Eq.(27), to non-linear systems we
actually get the modal parameters for the linear equivalentsystem but not for the non-linear
one.

If we consider a damped system with theC-matrix as a linear combination of theM andK
ones (i.e.C = αM + βK ) we can reach a similar interpretation as it was done for undamped
systems. From this method we do have access to the normal modes of the systems.

4.2 Influence of the modal damping on the identification quality

In this part we will consider the same mechanical system but this time we consider modal
damping through theζ-coefficients. In order to observe the influence of the damping on the
identification made with SD we will investigate the evolution of the relative error in the identi-
fied natural frequencies with increasing modal damping. Note that here the modal damping is
considered constant i.e. the same for all modes.

This example will investigate the influence of the modal damping factor on the evaluated
frequencies from SD. To discuss this we will observe the relative error in each natural frequency
for different values of the modal factor0% ≤ ζ ≤ 10%. Keep in mind that the modal damping is
constant. On the Fig.7 we can see that the relative error in the natural frequenciesis increasing
linearly.
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Figure 7: Evolution of the relative error in the five natural frequencies with respect to the modal damping

Now let us have a closer look on the identification made withζ = 10%. In the Table3 we
can see that the relative error for the estimated natural frequencies is quite important.

No Freq. EIG (Hz) Freq. SD (Hz) Rel. Error (%)
1 8.1539 8.1497 0.0517
2 51.125 50.496 1.2441
3 143.59 139.44 2.9750
4 283.67 268.51 5.6458
5 470.81 441.88 6.5472

Table 3: Comparison of natural frequencies from SD and the ones calculated from the mass and stiffness matrices.
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Figure 8: Results for the cantilever beam considering modaldamping of 10%. Left: Mode shapes comparison /
Right: MAC between the EIG-resolution modes and the SD ones

But, in the same time, we can see that the estimation of the modeshapes was not that bad for
the first modes. This proves that for high modal damping factors this method is not adequate.
As SD gives the evaluation of the normal modes, it was expected for high damped systems an
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inadequate evaluation of them and their frequencies. Concerning modes, the conclusions are
similar. For small damping factors the approximations are quite good but for bigger ones we
observe some mode shapes that do not correspond to the expected ones.

5 CONCLUSIONS

In this article we have discussed the concept of Smooth Decomposition and explained the
method. Its properties were exposed and the concept of Dual Smooth Modes were presented.
We showed simple examples where SD was used as a modal tool forthe identification of me-
chanical systems.

As we have seen in the first part, this method can be applied forundamped linear systems
which makes sense since this method was developed exactly for this kind of systems. We have
seen in the second part that SD also works for low-damped systems. However, for high-damped
systems SD is not really adapted and should be improved. Indeed, as SD gives the normal modes
associated to a given field, this method may not work for finding modes with an imaginary part
which may be the case for damped systems.

In previous articlesFoiny, D. and Wagner, G.B. and Sampaio, R. and Lima, R.(2017) and
Wagner, G.B. and Foiny, D. and Sampaio, R. and Lima, R.(2017) we have shown that SD is a
powerful for discrete system with several degrees of freedom. In this article we have shown an
application of SD to continuous systems discretized by finite element method.

A crucial point that was not developed in this article is the importance of the excitation
quality. The excitation of the system has to respect some conditions to get a good approximation
and estimation of the modal parameters. If the excitation does not satisfy the properties, the
results are affected and this has to be taken into account forthe interpretation.

Finally, it is possible to say that SD is a nice tool for modal analysis and can be applied
to continuous systems. We would like to highlight that the method can also be applied to
identification of non-linear systems since it is possible todefine an energy indicator.
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