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Abstract. Guyed transmission lines are extensively used in overhead power transmission around the

world. This kind of structures presents a series of favorable characteristics like simple installation pro-

cedure, low weight and low cost. However, on the other side, they are highly flexible, and exhibit a very

nonlinear behavior. Moreover, the most demanding load is represented by wind, which is of random

nature. In this sense, the present study addresses the dynamic analysis of a three-dimensional model of

a transmission line segment composed by a guyed tower with four guy wires and two spans of conduc-

tor cables, subjected to stochastic wind load. The model accounts for the coupling effect between the

different physics that take place. In this scheme, the supporting tower is modeled as a linear equivalent

beam-column, assuming the hypothesis of the Euler-Bernoulli beam theory and with properties equiva-

lent to a lattice tower. The second order effect due to axial loads on the tower is considered. The motion

of the conductors and the guys, on the other side, is governed by a set of nonlinear equations which

considers the cables extensibility. The system is discretized by means of the Finite Element Method.

The wind velocity comprises a mean and a turbulent component. The Spectral Representation Method

is used to derive the latter, which starts from a Power Spectral Density of the wind velocity leading to

a function that accounts for both the temporal and spatial correlations. In order to assess the sensitivity

of the structure to the variations of the stiffness, the initial tension in each of the four guy cables is as-

sumed an independent random variable. Given the available information about the pretension variables,

the Principle of Maximum Entropy is applied to derive the corresponding probability distributions. The

stochastic response of the structure is evaluated.

Mecánica Computacional Vol XXXVI, págs. 761-770 (artículo completo)
José G. Etse, Bibiana M. Luccioni, Martín A. Pucheta, Mario A. Storti (Eds.)

San Miguel de Tucumán, 6-9 Noviembre 2018

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 INTRODUCTION

Guyed transmission towers present a series of favorable characteristics which makes them

suitable for overhead electric transmission. A typical configuration of the suspension type is

shown in Fig. 1. In effect, they are cheaper and lighter than traditional self-supporting towers

and their field assemblage procedure is simpler. On the other side, this kind of structures are

very flexible, their stability is strongly dependent on the tension of the guy cables, and their

overall behavior is highly nonlinear. Moreover, the most demanding load is represented by the

wind, which is random in nature. As a result, the response of the transmission line to the load

is random as well.

(a) (b)

Figure 1: (a) Photograph of a transmission guyed tower of suspension-type. (b) Scheme of the simplified model of

the guyed transmission line segment under study.

Because of the mentioned characteristics, the dynamic behavior of flexible guyed structures

subjected to wind load constitutes a matter of active research. Gani and Legeron (2010), for

instance, present a comparison between the response of a 3D model of a transmission line

segment subjected to the static-equivalent wind load proposed in the international standard IEC

60826 and the transient dynamic response of the structure under a simulated stochastic wind

load field. They perform 10 realizations of the stochastic problem and compute the average of

the maximum peaks of the resulting stochastic processes of interest. The authors conclude that

the static-equivalent method not always provides conservative results.

The pretension of the guys, which is defined at the design stage, plays a very important role

in the dynamic behavior of flexible guyed structures. The relevance of this issue is addressed

by Ballaben et al. (2017). However, at the moment of the tower assemblage, this magnitude

is installed within certain error margins, and furthermore, it will inevitably vary during the

lifespan of the structure. Moreover, predominant directions of wind, for instance, can cause

unequal softening of the guys. For these reasons, the consideration of the guys pretension as an

independent random variable seems an adequate approach.

The present study addresses the uncovered probabilistic evaluation of the dynamic response

of a guyed transmission line with uncertain pretension of the guys, subjected to stochastic wind

load. The turbulent component of the wind speed is assumed to be characterized by the spectrum

proposed by Davenport (1961). The spatial and temporal correlations of this component are

accounted for. Furthermore, the wind load according to the IEC 60826 code is also considered.

A mathematical model of a guyed transmission tower and two adjacent spans of conductors

in the 3D space is stated. The cable elements (i.e. guy wires, insulator strings, and conductors)

are modeled according to the nonlinear formulation proposed by Luongo et al. (1984). The lat-
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tice tower, on the other side, is simplified as an equivalent column assuming the Euler-Bernoulli

beam theory. The coupled nonlinear system of equations is discretized through the Finite El-

ement Method. The stochastic wind speed field for the wind load is generated by means of

the Spectral Representation Method (SRM). The pretensions of the four guys are assumed as

independent and identically distributed random variables. The Principle of Maximum Entropy

(PME) is applied to derive the corresponding density functions.

A series of Monte Carlo simulations of the dynamic response of the stochastic discretized

system are performed. The study focuses on three stochastic processes of the system response:

the dynamic tension of the windward guy cables, and the displacements in the direction of the

wind at the top of the tower. In particular, the random first passage of these processes through

the reference threshold defined by the static response of the structure under the IEC 60826 wind

load is assessed.

2 DETERMINISTIC MATHEMATICAL MODEL

A scheme of the transmission line model under study is represented in Fig. 1. The supporting

tower is composed by a latticed main vertical tower of 52.18 m height, two transverse support of

6.71 m length from which the insulator chains hung, and four guy wires which are connected to

the tower at 38.04 m from its base. The latticed elements are modeled as beams-columns. Two

spans of 480 m of conductor cables are considered for the study. The conductors are connected

to the insulator strings from one side and a pinned condition is assumed on their other end.

A mathematical model in the 3D-space is stated. The vertical tower and the transverse sup-

port are modeled assuming the Euler-Bernoulli beam theory. Moreover, the axial and torsional

deformations of the beam are considered, and the stress-strain relations are assumed linear. On

the other side, the conductors, guy wires, and insulator strings are modeled as elastic unidimen-

sional cables, by means of the nonlinear formulation proposed by Luongo et al. (1984). In this

scheme, the following hypothesis are adopted: (i) the stress-strain relation is assumed linear,

(ii) the flexural, torsional, and shear rigidities are neglected, (iii) the axial deformations of the

cable are described through the Lagrangian strain measure, and (iv) the static equilibrium con-

figuration is represented by a parabolic profile. This assumption is valid for taut cables, where

the sag to span ratio is less or equal than 1/10, which is the case of the cables in this work. The

displacements of the cable during its motion are referred to the initial parabolic profile.

The weak form of the governing equations reads:

m(v̈,φ) + c(v̇,φ) + k(v,φ) + bc(v,φ) = f(v,φ) (1)

In Eq. 1, m(v̈,φ), c(v̇,φ), and k(v,φ) denote the mass, damping, and stiffness operators,

respectively, and bc(v,φ), f(v,φ) are the boundary conditions and external fores operators,

respectively. From now on, sub-indexes b and c stand for the beam and the cable elements,

respectively. The field variables are v = ub, vb, wb, θx for the beam and v = {uc, vc, wc} for

the cable. The vector of admissible weight functions is represented by φ = {φb, φc}. The

displacements along the local {xb,c, yb,c, zb,c} directions are {ub,c, vb,c, wb,c}, and θx is the twist

angle of the beam around its longitudinal (xb) axis. The external actions per unit length on the

beam and cable are {qxb, qyb, qzb,mxb} and {qxc, qyc, qzc}, respectively. Thus, the expressions
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for the operators in Eq. 1, are:

m(v̈, φ) =

∫ lb

0

φbmb(üb + v̈b + ẅb)dxb +

∫ lc

0

φcmc(üc + v̈c + ẅc)dxc

c(v̇, φ) =

∫ lb

0

φbcb(u̇b + v̇b + ẇb)dxb +

∫ lc

0

φccc(u̇c + v̇c + ẇc)dxc

k(v, φ) =

∫ lb

0

[eb(izv
′′

b + iyw
′′

b )φ
′′

b + ebabu
′

bφ
′

b + gbixθ
′

xφ
′

b + nb(v
′

b + w′

b)φ
′

b]dxb+

+

∫ lc

0

[φ′

ch(v
′

c + w′

c) + φ′

cecac(y
′

c + v′c)ε+ φ′

cecacε]dxc

bc(v, φ) =ebizv
′′′

b φ|lb0 + ebiyw
′′′

b φ|lb0 − ebizv
′′

bφ
′|lb
0
− ebiyw

′′

bφ
′|lb
0
+ nbv

′

bφ|lb0 + nbw
′

bφ|lb0 +
+ ebabu

′

bφ|lb0 + gbixθ
′

xebabu
′

bφ|lb0 + hv′cφ|lc0 + hw′

cφ|lc0 + ecac(y
′

c + v′c)εhφ|lc0

f(v, φ) =

∫ lb

0

φb(qxb + qyb + qzb +mxb)dxb +

∫ lc

0

φc(qxc + qyc + qzc)dxc

(2)

where nb is the axial load acting on the beam. The cross section area, mass per unit length,

damping, and modulus of elasticity of the beam and cable are represented by ab,c, mb,c, cb,c, and

eb,c, respectively. The shear modulus of the beam is denoted gb, whereas its second moments

of area with respect to the three local axes are ix, iy, and iz. The elongation of the cable

is expressed by ε = u′

c + y′cv
′

c + 1/2v′c. Denoting sc as the cable sag, the equation of the

parabola which describes the initial configuration of static equilibrium under self weight is yc =
4sc [xc/lc − (xc/lc)

2]. The parameter h represents the pretension of the cable. The geometric

and mechanical properties considered for the study are reported in Tables 1 and 2.

ab iy iz ix mb eb gb
[m2] [m4] [m4] [m4] [kg/m] [N/m2] [N/m2]

Tower 3.71×10-3 2.62×10-3 2.62×10-3 5.20×10-3 41.92 2.00×1011 8.50×1010

Table 1: Geometrical and mechanical properties of the tower modeled as an equivalent beam.

dc mc ec
[mm] [kg/m] [N/m2]

Guy cables 14.3 0.94 1.86×1011

Conductors 40.6 2.95 0.62×1011

Table 2: Diameter dc and mechanical properties of the cables.

2.1 Finite Element Discretization

After deriving the weak form of the governing equations, the system is discretized by means

of the Finite Element Method. In this sense, beam equations are discretized into 2-node linear

elements of 12 DOFs (6 by node) whereas the cable equations are discretized into 3-node curved

nonlinear elements of 9 DOFs (3 by node). After assembling the matrices, the system equation
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results:

[m] ü(t) + [c] u̇(t) + [k]u(t) + knl(u(t)) = f(t) (3)

where u is the vector of DOF, [m], [c] are the mass and damping matrix, [ki] is the beam stiffness

matrix, knl(u) is the nonlinear vector associated with the cable elements stiffness, and f is the

vector of external forces.

3 STOCHASTIC MODELS

3.1 Stochastic wind model

The action of wind on structures depends on the total wind speed VT (z, t), which is random

in nature. However, it can be divided in two parts, the deterministic mean wind speed, which

varies with the height z above the ground, and the turbulent wind part which varies not only

with height but also in time:

VT (z, t) = µνT (z) + V(z, t) (4)

The potential profile of the mean wind speed is µνT (z) = v0(z/10)
α. The term v0 = 38.75

m/s represents the reference wind speed. This parameter depends on the geographical place-

ment of the structure, and is provided by national standards. The value adopted in this work

corresponds to the city of Bahia Blanca. For terrain category B, the exponent α assumes the

value 0.16 (IEC 60826).

The characterization of the turbulent component, on the other side, is not that straightfor-

ward. It is defined by its power spectral density function (PSDF). In the present study, the

spectrum proposed by Davenport (1961) is adopted:

s(z, ω)ω

σ2
v

=
2

3

fl(z, ω)
2

(1 + fl(z, ω)2)4/3
(5)

In this expression, s(z, ω) is the PSDF of the along-wind turbulence component, ω is the

frequency, σv =6.6 m/s is the standard deviation of the turbulent wind speed component, and

fl(z, ω) = ωlv/µvT (z) is a non-dimensional variable which depends on the frequency, the lon-

gitudinal integral length of the turbulence lv = 1200 m, and the mean wind speed. The statistical

dependence of the turbulence components at two separate points in the space, due to the spatial

dimension of the wind vortices, is defined by the cross spectrum:

sc(z1, z2, ω) = sc
12
(ω) =

√

s(z1, ω)s(z2, ω)exp(−γ) (6)

γ =
2ω[(cy(y2 − y1))

2 + (cz(z2 − z1))
2]1/2

[µνT (z1) + µνT (z2)]
. (7)

The coherence function γ involves the distance between the two points under consideration

along the vertical (z2−z1) and transverse-to-wind (y2−y1) direction, affected by the respective

non-dimensional decay coefficients cz=10 and cy=16 (Gani and Legeron, 2010).

On this basis, the Spectral Representation Method (SRM) (Shinozuka and Jan, 1972) allows

to simulate the turbulent wind speed field. The wind is considered to act transversally to the

conductors, in the direction of the x-axis (see Fig. 1). For the sake of brevity, the derivation of

the method is not outlined. For a comprehensive description, the reader is referred to Ballaben
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et al. (2017). In this scheme, the random wind speed registers Vj(z, t) j = 1, ...,m are generated

at m = 52 points on the structure: 12 along the tower height and 20 points along each of both

conductors spans placed in the windward yz plane. Since the variation of the wind speed in

the along-wind distance between conductors is disregarded, the same wind speed is considered

to act in both planes. These stochastic processes are simulated as a sum of cosines of random

frequencies Ωn and phase angles Φkn. :

Vj(zj, t) =
m
∑

k=1

nf
∑

n=1

|hjk(ωn)|
√
2∆ω cos[Ωnt+ Φkn] (8)

For the simulations, a cutoff frequency of 4 Hz is defined and the spectrum is discretized into

nf = 1000 intervals of amplitude ∆ω = 0.004 Hz. Thus, every random frequency is defined

as Ωn = n∆ω + Ψkn∆ω. Both the random parameter Ψkn and the independent random phase

angles Φkn are uniformly distributed in the interval [0, 2π]. The time step and duration of the

registers are defined as dt =0.125 s and tf = 540 s, respectively. The amplitude |hjk(ωn)|
corresponds to the (j, k) entry in the lower triangular matrix [h(ω)], obtained as the Cholesky

decomposition of the cross-spectral density matrix [s(ω)] .

On this basis, the stochastic wind load field Fj(z, t) acting on the tower and conductors is

computed as:

Fj(z, t) =
1

2
ρacdawµvT (z)

2 + ρacdawµvT (z)Vj(z, t) (9)

where ρa = 1.225 kg/m3 is the air density, the drag coefficient cd is 1 for conductors and 3.34

for the tower, and aw is the area of the element exposed to the wind.

3.2 Guys random pretension model

The pretensions h1,..,4 of the 4 guy cables are considered independent and identically dis-

tributed random variables, denoted H1 and H2 for the windward guys, and H3 and H4 for the

leeward guy cables. For the characterization of their (identical) probability distribution, they

will be all referred as H . For the model in this work, the mean of the random variable H is

assumed as 10% of the cable UTF, i.e. µH = 13200 N, and its standard deviation as 1/5 of the

mean: σH = 2640 N. Moreover, it is known that this variable can not assume negative values,

which establishes a lower margin for the support of the random variable. With this informa-

tion, the application of the Principle of Maximum Entropy leads to a Gamma distribution of

the random guy pretension with shape and scale parameters α = (µH/σH)
2 and β = σ2

H/µH ,

respectively:

H ∼ Γ(a, b) =
xa−1e−

x
b

Γ(a) ba
; h > 0 (10)

4 EVALUATION OF THE STOCHASTIC RESPONSE

The inclusion of the stochastic wind load field and the random pretension of the guy cables

in the mathematical model converts Eq. 3 into a discretized stochastic system of nonlinear

equations. In order to derive a statistic model for the stochastic response, a series of Monte

Carlo simulations of the discretized model are performed.

4.1 Computational implementation

Each numerical simulation of the system dynamics consists of two steps. First, the pretension

of the guy cables is applied and the static configuration of equilibrium under self weight is
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computed by means of the nonlinear Newton-Raphson solver. Thus, the initial configuration for

the dynamic analysis of the system under wind load is obtained. Within the dynamic study, the

discretized system of equations is integrated by means of a coupled Newmark/Newton-Raphson

solver with a fixed time step of ∆tdyn = 0.0313 s. The structural damping matrix is constructed

as linear combination of the mass and linearized stiffness matrices [c] = αr[m]+βr[kl], being αr

and βr the respective Rayleigh coefficients. These are computed separately for every structural

element based on the corresponding damping ratio, namely ǫc = 0.001 for conductors and guy

cables and ǫc = 0.005 for the tower (Gani and Legeron, 2010). In order to improve the stability

of the dynamic solver, a sine window is applied to the wind load such that its full magnitude be

progressively developed during the first minute of the simulation. This initial transient period

and the successive 60 seconds are disregarded, and the remaining 7 minutes are analyzed.

4.2 Monte Carlo simulations

In this study, attention is focused on three stochastic processes: the dynamic tension of the

two guy wires in the windward side, denoted as H1(t) and H2(t), and the displacements at the

top of the tower (indicated as point of evaluation in Fig. 1) in the direction of the wind, denoted

U (t). A convergence study is performed in order to determine the minimum number of Monte

Carlo simulations of the problem that allow to construct representative statistics of the stochastic

response. In this regard, the evolution with the number of realizations nr of the sample mean

µ̂X (tp) and standard deviation σ̂X (tp) of the processes (X represents either H1, H2, or U ) in a

particular time tp is evaluated. Specifically, the coefficient of variation δ̂X (tp) = µ̂X (tp)/σ̂X (tp)
is computed. Figure 2a shows the convergence of this statistic for the three stochastic processes

under study. It can be observed that after 2000 realizations of the problem, the coefficient

of variation remains approximately stable, which suggests that convergence has been attained.

Fig. 2b confirms that similar magnitudes of the coefficient of variation are obtained at every

instant of time. Moreover, the latter graph suggests that the first order statistics do not vary with

time. Besides this, in a previous study (Rango et al., 2018) it has been found that the sample

correlation of the processes depend on one parameter only, i.e. the difference in time, and that

the temporal mean coincides approximately with the sample mean. This is, it can be assumed

that the processes are stationary and ergodic.

1000 2000 3000 4000

0.12
0.14
0.16
0.18

0.2
0.22
0.24

(a)

0 100 200 300 400

-0.2

0

0.2

0.4

0.6

(b)

Figure 2: Convergence of the stochastic processes under study. (a) Evolution of the sample coefficient of variation

δ̂, at a particular time tp. (b) Sample coefficient of variation δ̂ at each simulated time t.

An interesting feature of the stochastic response arises from the construction of scatter plots

of the dynamic tension on the windward (Fig. 3a) and leeward guy cables (Fig. 3b) at each

instant during one particular realization. Indeed, a positive correlation is apparent between the

tensions in the windward guy cables. On the other side, any particular trend is apparent in Fig.

3b. This suggests that, despite the initial independence in the guys pretension, the wind load
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field induces a correlation between the dynamic tensions in the windward guy cables.
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Figure 3: Dynamic tension of the (a) windward and (b) leeward guy cables at every instant during one particular

realization of the problem.

4.3 Statistics of extremes

In this section, the extreme values of the stochastic processes H1(t), H2(t), and U (t), are con-

sidered. The maximum peak of these processes constitutes random variables that are denoted

H1p, H2p, and Up, respectively. Moreover, for comparative purposes, these distributions are

compared with the static results from the application of the IEC 60826 static-equivalent wind

load. For the static analysis, the pretension of the guy wires is defined as the mean of the asso-

ciated random variable µH = 13200 N. The deterministic value of the resulting tension force of

the guy cables on the windward side and the displacement at the top of the tower are denoted as

h1st, h2st, and ust, respectively.

Figure 4(a)-(c) shows 4000 samples of the random variables H1p, H2p, and Up, respectively.

The horizontal red line indicates the reference threshold values h1st, h2st, and ust. It can be

observed that in the three cases, a series of samples exceed the static threshold. A particular

realization could result in no surpasses of the reference value and, likewise, the limit could

be exceeded once, or more than once. Attention will be focused now towards the statistical

evaluation of the problem of level crossings (Lima and Sampaio, 2017).

0 1000 2000 3000 4000

1.4

1.6

1.8

105

0 1000 2000 3000 4000

1.4

1.6

1.8

105

0 1000 2000 3000 4000

0.7

0.8

0.9

1

Figure 4: Realizations of the random variables H1p, H2p, and Up, associated with the maximum value of the

respective stochastic processes.

The random variable associated with the time of occurrence of the first passage of the random

processes H1(t), H2(t), and U (t) beyond the reference threshold will be denoted as Th1, Th2,

and Tu, respectively. Their normalized histograms, constructed with 596, 735, and 924 sample

realizations, respectively, are reported in Fig. 5. The reason for the variability in the size of

the sample lies in the fact that the number of realizations that exhibits at least one excursion
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is a random variable as well. The higher distribution of probability near the beginning of the

histograms suggests that the first passage is likely to occur relatively soon.

Figure 5: Normalized histograms of the random variables Th1, Th2, and Tu, constructed with 596, 735, and 924

samples, respectively.

The study is completed with an evaluation of the duration of the first passage. In this sense,

three new random variables are defined, i.e. Dh1, Dh2, and Du characterize the time elapsed

between the first crossing with positive slope and the first crossing with negative slope of the

stochastic processes H1(t), H2(t), and U (t) through the respective reference threshold. Their

normalized histograms are reported in Fig. 6. The available number of samples of each random

variable is the same as for Th1, Th2, and Tu, respectively. In the case of Du, the normalized

histogram could be associated with that of a Gamma distribution. This trend is not observable

in the histograms of Dh1 and Dh2.

Statistics of these random variables are reported in Table 3. Specifically, the sample mean,

standard deviation (SD), coefficient of variation (COV), skewness, and kurtosis, are computed.

From this information, it follows that the first passage occurs, in average, 3 minutes apart from

the beginning of the processes. However, this random variables shows a relatively high dis-

persion, as indicated by the sample SD and COV. The average duration, on the other side, lies

around 0.2 s for the three stochastic processes, and exhibits a lower dispersion of the samples

results (see COV). The consideration of the first passage problem in stochastic processes is im-

portant. It constitutes the staring point towards the determination of reliability measures, which

will be tackled by the authors in an upcoming work.

5 CONCLUSIONS

The present work addresses the statistical evaluation of the response of a guyed transmis-

sion line subjected to a stochastic wind load field and with the inclusion of uncertainty in the

pretension of the guys. A series of Monte Carlo simulations of the structural response were

performed. The study focuses on three stochastic processes of the structural response: the ten-

sion of the guy cables on the windward side, and the along-wind displacements at the top of the

tower.

Figure 6: Normalized histograms of the random variables Dh1, Dh2, and Du, constructed with 596, 735, and 924

samples, respectively.
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Mean SD COV Skewness Kurtosis

Th1 162.46 114.82 0.71 0.59 2.20

Th2 161.54 114.74 0.71 0.64 2.19

Tu 158.99 117.73 0.74 0.82 2.51

Dh1 0.21 0.10 0.48 0.59 3.46

Dh2 0.20 0.10 0.53 0.83 3.58

Du 0.19 0.10 0.53 0.94 4.21

Table 3: Statistics of the random variables associated with the time of occurrence (Th1, Th2, Tu) and duration

(Dh1, Dh2, Du) of the first excursion of the random processes through their respective reference threshold.

It was found that during the interaction of the structure with the dynamic wind load, the

initial independence of the random tension is lost in the windward guy cables, which exhibit a

positive correlation. Moreover, the study showed that the static response of the structure under

the static-equivalent wind load proposed in the IEC 60826 standard, is likely to be surpassed.

Therefore, the random variables which characterize the time of occurrence and duration of

the first of these passages, were studied. Indeed, normalized histograms and statistics were

computed, and quantities as the average time of occurrence and duration of the first passage

were reported.
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