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Abstract. Nowadays, fractional flow reserve (FFR) is considered the gold standard technique to assess

risk of myocardial ischemia in the presence of coronary artery disease. Moreover, FFR is an invasive

procedure, which requires specialized cardiologist and dedicated medical instrumentation, i.e. it is far

from being risk free and it is expensive. In this context, a tool to estimate FFR from computational fluid

dynamics non-invasively could impact positively the patient experience, reducing economic costs and

providing a new diagnostic tool for physicians. Although there are some studies proposing computational

solutions for the estimation of FFR, they generally lack of sensitivity analysis of the hemodynamics

parameters. In this work we are interested in assessing the effect of coronary flow reserve (CFR) in

the outcomes of the numerical simulations of coronary blood flow. To this end we make use of a set

of 24 coronary computed tomography angiography (CCTA) images from which the arterial network

is segmented and utilized to perform blood flow simulations. The blood circulation is modeled using

lumped mathematical representations in a steady state regime, with geometrical features retrieved from

the CCTA images. At least one measurement of fractional flow reserve (FFR) is available for each

patient, totaling 35 measurements. Some hemodynamic parameters for the simulations were found to be

patient specific while others are calibrated with a single general value for all patients. The study focuses

on the estimation of CFR that minimizes the difference between the in-vivo FFR measurements and the

computational estimations. This strategy may shed light on the underlying mechanisms ruling territorial

myocardial resistance.
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1 INTRODUCTION

The gold standard tool to quantify functional severity of a coronary artery stenosis is the

Fractional Flow Reserve (FFR) index (Tonino et al., 2009). It is calculated as the ratio of

post- and pre-stenotic blood pressure measurements under hyperemic conditions. In clinical

protocols, FFR < 0.8 indicates that the patient is at risk of suffering myocardial isquemia due

to the functional severity of the stenosis.

In recent years, the scientific community specialized in computational hemodynamics in-

curred in the estimation of FFR through computer simulations. In this context, several ap-

proaches using image modalities such as coronary computed tomography angiography (CCTA)

(Taylor et al., 2013) and angiography (AX) (Morris et al., 2013) emerged, see (Bulant, 2017)

for a comprehensive review. Most of the proposed methods, use 3D models to solve the com-

putational fluid dynamic problem (Taylor et al., 2013), some use 1D models (Itu et al., 2012),

but a few solutions were proposed using 0D models (Huo et al., 2012). It is important to remark

that the use of 3D models poses several challenges, which range from detailed 3D lumen seg-

mentation procedures and mesh generation to time-consuming numerical simulations in high

performance computing facilities. Although 1D simulations are cheaper from the computa-

tional point of view, a comprehensive comparison to 3D simulations in the context of FFR is

still lacking in the literature. Regarding 0D models, current approaches (Huo et al., 2012) fo-

cused on the pressure drop across stenoses, modeling a single artery, and neglecting issues such

as patient specific coronary blood flow estimation or flow distribution, which are key, as will be

presented in this work.

Generally, the literature addressing the computational estimation of FFR concentrates on

comparing a given proposed methodology to the invasive measurements (Bulant, 2017). But

little detail is given to the impact of model parameters in the simulation outcome. Studying the

sensitivity of the method to model parameters is crucial to understand the estimation errors and

improve the method. Empirical analysis requires to perform several computer simulations vary-

ing the parameters values. In such context, cheap computational models, like the 0D, allows to

efficiently analyze different scenarios, providing physiologically reasonable coarse descriptions

of the hemodynamics in vascular networks.

The goals of this work are: (i) Present a 0D model to computationally estimate the fractional

flow reserve, FFRCE, from CCTA images and patient data; (ii) Validate the model against in-

vasive measurement, FFRinv; (iii) Assess the impact of the coronary flow reserve, CFR, on the

computation of FFRCE by data assimilation using Kalman filter.

2 MATERIALS

The study sample was constructed from patients with suspected chronic coronary disease

who underwent multimodal evaluation with CCTA and a posterior FFRinv measurement. The

study protocol was approved by the ethics committee of the Heart Institute and the Sírio-Libanês

Hospital, both in São Paulo, Brazil. Overall, 35 vessels of 24 patients were assessed using

FFRinv. Baseline clinical and lesions characteristics are outlined in Tables 1 and 2.

3 METHODS

3.1 From images to arterial models

Imaging data were acquired following standardized image acquisition protocols, at the Insti-

tuto do Coração (InCor) and Hospital Sírio-Libanês, São Paulo, Brazil.
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Baseline clinical characteristic Patient sample (n = 24)

Age, yrs 61±9

Male 21 (87)

BMI, kg/m2 28±3

Weight, Kg 85±15

Height, cm 174±10

HR, bpm 70±8

SP, mmHg 113±13

DP, mmHg 68±10

MP, mmHg 84±10

Circulation Dominance

Right 22 (92)

Left 1 (4)

Co 1 (4)

Table 1: Summary of patient data, the mean

± SD, or n (%), are reported. Body mass in-

dex (BMI), heart rate (HR), diastolic, systolic

and mean pressures (DP, SP and MP).

Baseline lesion characteristic Vessel sample (n = 35)

LAD 21 (60)

LCX 6 (17)

RI 1 (3)

OM 1 (3)

RCA 6 (17)

FFRinv 0.88±0.08 (0.71, 0.99)

Table 2: Summary of lesions, the mean ±
SD (min, max), or n (%), are reported.

Circ. Dominance LAD LCx RCA RI

RI not present

Right 60 22 18 0

Left 60 30 10 0

Co 60 24 16 0

RI present

Right 57 10 18 15

Left 60 15 10 15

Co 59 10 16 15

Table 3: Percentage of the QT at the inlet

of each major artery.

Segmentation of CCTA images is achieved using the methodology detailed in Bulant et al.

(2017), based on level sets and colliding front techniques (Antiga et al., 2008). This procedure

results in a triangulated raw surface of the coronary tree. Such mesh is smoothed and used to

construct the arterial tree centerline following Antiga et al. (2003).

Centerlines are polyline structures that retain: arterial length, spatial disposition and vessel

cross-sectional radius. Centerlines are post-processed to account for: bifurcation mask defining

the arterial ostium per artery; stenosis mask, defining lesioned regions, manually marked by an

specialist; label defining the anatomical name of each artery, see Bulant et al. (2017) for details.

3.2 Blood flow model

The simulations are performed using the patient-specific centerline as the geometric substrate

for the numerical model. Such structure comprises the key information required by the model

to perform the simulation: (a) the topological connectivity of the arterial segments, through

their branching points; (b) the point-wise information of the arterial radius, ri, i = {1, ..., N},

with N the number of centerline points (a computational node per point is considered); (c)

the root point, which is the network inlet at the aortic root, I; and the network outlets Om,

m = 1, ..., NO; (d) the mask identifying nodes corresponding to the stenotic lesions.

A steady state 0D model is used to describe the incompressible flow of a Newtonian fluid

in non-compliant vessels. The stenosis model proposed by Young and Tsai (1973) is used at

locations identified as stenotic. The blood pressure (Pi) and the blood flow rate Qi are computed

at each computational node (i). The governing 0D equations are detailed below.

The standard mass conservation and pressure continuity junction model are used at each

bifurcation point, where node i branches into nodes j and k, yielding

{

Qi = Qj +Qk, and Pi = Pj = Pk. (1)

Given an arterial segment containing M points, M − 1 lumped parameter elements are used.

For each element, the mass conservation and the hydraulic analogue of the Ohm’s law are
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considered. Then, for an element formed by nodes i and i+ 1, the equations are

{

Qi+1 = Qi, and Qi+1 =
Pi − Pi+1

Ri,i+1

, (2)

where, the resistance to the flow at each segment is modeled with an extension of Poiseuille’s

law for tubular segments featuring tapering

Ri,i+1 =
8µL

3π

[

1

r3i ri+1

+
1

r2i r
2
i+1

+
1

rir
3
i+1

]

. (3)

where L is the element length, µ is the blood viscosity, and ri, ri+1 are the radii at nodes i and

i + 1. Note that for a vessel with uniform radius, i.e. ri = ri+1, equation (3) reduces to the

classic Poiseuille’s formula.

Each stenotic region of the tree is replaced with a lumped parameter model proposed by Young

and Tsai (1973), for which we have

{

Qi+1 = Qi, and Pi − Pi+1 = Kv

µ

D

Qi

A
+Kt

ρ

2

[

A

As

− 1

]2
Q2

i

A2
, (4)

where ρ is the blood density, Qi and A (D the diameter) are the flow and lumen area in the

unobstructed part of the vessel, As is the minimum stenosis area, Kv and Kt are model pa-

rameters characterizing viscous and turbulent losses, respectively. These parameters are chosen

following Seeley and Young (1976) as

{

Kt = 1.52, and Kv = 32
0.83Ls + 1.64Ds

D

[

0.75

(

A

As

)

+ 0.25

]2

, (5)

where Ls is the lesion length and Ds is the minimum cross-sectional diameter of the stenosis.

Regarding boundary conditions, the pressure and flow rates, are prescribed at the inlet and

outlets, respectively:

{

PI = Pao, QOm
= Q̄Om

m = 1, . . . , NO, and QT =
NO
∑

m=1

Q̄Om
. (6)

The pressure at the inlet is set to the mean aortic pressure (Pao), while the total coronary flow

QT is the sum of outflows (Q̄Om
). Each of which is set to the value given by an adaptation of

the Murray’s law, which relates the flow rate of a segment to its inlet radius, see Section 3.2.1.

In the numerical implementation, Eq. (4) is linearized using fixed-point iterations. The re-

sulting real linear system of equations is solved using LAPACK dgles function through a QR

factorization within a custom C++ source code.

3.2.1 Flow distribution

The widely known Murray’s law Murray (1926), relates (i) flow to vessel diameter and (ii)

diameter of vessels sharing a bifurcations through a power law. According to the seminal work

of Murray Murray (1926), the optimal branching structure of a vascular tree is theoretically

equivalent to Q = βrγ with γ = 3. Numerical studies have shown a value of γ = 2.66 for

vascular networks constructed with the CCO method Blanco et al. (2013) in which the total

flow rate is proportional to the volume of the vascular territory.
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In this work, given the total flow QT and the arterial centerline for a given patient, the flow

distribution is estimated using the so-called proximal Murray flow distribution (PMD), intro-

duced in Bulant (2017). Briefly, the PMD method was designed to account for tapering in

long segments lacking side branches, a situation which is frequently encountered in models

constructed from CCTA images with low-quality. In such context, Murray’s law hypothesis

(constant section diameter per segment and homogeneous wall shear stresses) are not fulfilled.

In practice, for a given arterial tree model obtained proximal CCTA segmentation, radii of

arterial segments are more reliable than terminal radii, because of technical limitations such

as image resolution and noise. Moreover, the absence of small side branches and associated

sub-trees in long arterial segments results in an artificial tapering, directly impacting the flow

distribution, when compared to that calculated using all outlet radii only (classic Murray’s law).

In turn, if Murray’s law is recurrently used at each branching point, a more realistic flow at the

inlet of large-proximal branches for truncated networks should be expected.

Then, the PMD strategy requires to travel through a coronary network from the aortic root

down to the terminals. Starting with the QT , at each junction with Nb branches, the algorithm

computes the outflow per branch (Qb) using the ostium radius of each branch (rb) and the inflow

Qin for the junction, this is
{

Qb = βr
γ
b b = 1, . . . , Nb, and β = Qin

(

Nb
∑

b=1

r
γ
b

)−1

. (7)

Note that the method can easily be adapted to account for flow distribution restrictions in spe-

cific branches. Exploiting such property, we introduce physiological restrictions such that the

flow at the inlet of the main arteries respect the proportions detailed in Table 3.

3.3 Model parameters

In order to perform a computer simulation of the coronary blood flow, two physiological

parameters are needed: (i) pressure at the root of the arterial tree, Pa; (ii) total flow rate to be

distributed among the outlets, QT . The strategy used to estimate such parameters in a patient

specific manner is detailed below.

As for the flow distribution method used to determine the outlet boundary conditions, the

Murray exponent γ is fixed to γ = 2.66 for all patients and the patient circulation dominance

(right, left or co) is known for each patient. Regarding the mathematical model, the stationary

0D model employed in this work only depends on the blood density and dynamic viscosity.

Specifically, we use ρ = 1.05 g/cm3 and for large arteries, µ = 0.04 P, for all patients.

3.3.1 Patient specific parameters

The mean aortic root pressure at rest, MP, is estimated from noninvasive measurements of

systolic (SP) and diastolic (DP) pressures at rest. Since FFR is measured under myocardial

induced hyperemia, we call the mean aortic root pressure at hyperemia Pa, and is estimated as

Pao = MP +∆, MP =
2DP + SP

3
. (8)

Where ∆ is the effect of intra-coronary (∆ = −3.8) or intra-venous (∆ = 4.4) administration of

adenosine, as reported in Bulant (2017). Only one patient of the sample received intra-venous

administration. For the patient sample, the average hyperemic aortic pressure value (Pao), as

calculated from Eq. (8), was 79.7±10.4 mmHg, in the range (61.2, 98.2) mmHg.
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Then, the resting coronary blood flow (RCBF) is assumed to be 4.5% of the cardiac output

(CO) Guyton and Hall (2006), which is estimated from non-invasive patient data as follows

RCBF = 0.045× CO, CO =
HR × SV

1000
,

SV = (0.49× (SP − DP) + 0.30× A + 7.11)×

(0.013× W − 0.007× A − 0.004× HR + 1.307),

(9)

where HR is the heart rate (in beats/s), SV is the stroke volume (in ml/beat), which is estimated

following de Simone and others (1999) from the diastolic and systolic pressures (DP and SP, in

mmHg), the age of the patient (A, in years) and its weight (W ,in Kg).

For the study sample, the estimated RCBF is 4.19± 0.67 ml/s, in the range (2.89, 5.51) ml/s,

which is in the physiological range (4.5± 1.37 ml/s) reported by Sakamoto et al. (2013).

Coronary flow reserve (CFR) is defined as the ratio between hyperemic and resting blood

flow. Therefore, the hyperemic flow used in the simulations is QT = CBF = CFR × RCBF. In

nonischemic human coronary arteries, CFR mean value is ∼2.6 (Johnson et al., 2012). Previ-

ous works that aimed to estimate FFR computationally, model hyperemia by reducing terminal

resistances by a factor of 4.5 (Taylor et al., 2013), based on Wilson et al. (1990). This work

focuses in the data assimilation problem targeting the estimation of CFR values for CFD simu-

lations in patients that underwent the FFR procedure.

3.4 Reduced order unscented Kalman filter

For a given set of observation Z = [FFRinv
1, FFRinv

2, . . . , FFRinv
N ] corresponding to N

invasive FFR measurements and the non-linear operator f that computes the fields P and Q

for the S arterial models, i.e. one per patient, with parameters Γ = [Γ1,Γ2, . . . ,ΓS] –using

previously introduced hemodynamic model–, the Kalman filter is formulated as follows

1. Generation of spherical sigma-points σ
(n)
i , i = 1, . . . , N + 1 with their corresponding

weights w(i) (see Julier (2003)) and initialization of the variables

R0 = σFFRinv
INN ; L0 =

[

L
X

0

L
θ
0

]

=

[

0X

1

]

; U
−1
0 = [σθ̂], (10)

Xa
0 = [X̂+

0 , θ̂
+
0 ]

T = [0X, θ̂0]
T , (11)

P
+
0 = L0U

−1
0 L

T
0 , (12)

where θ̂k is the CFR estimate at the k-th filter iteration, σFFRinv
is the uncertainty of the

invasive measurements and σθ̂ is the uncertainty of the CFR parameter. The operator 0X

denotes a column vector of 0’s with one element for each degree of freedom across all the

hemodynamic simulations. X̂+
0 and θ̂+0 are the initial values for P and Q fields and CFR

estimate, respectively.
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2. The prediction step

X̂
(i)
k−1 = X̂+

k−1 + L
X
k−1

√

U
−1
k−1 σ

(n)
i , i = 1, . . . , N + 1,

θ̂
(i)
k−1 = θ̂+k−1 + L

θ
k−1

√

U
−1
k−1 σ

(n)
i , i = 1, . . . , N + 1,

[

(X̂
(i)
k )

(θ̂
(i)
k )

]

= f
(

[

(X̂
(i)
k−1)

(θ̂
(i)
k−1)

]

,Γ
)

, Ẑ
(i)
k = h

(

X̂
(i)
k ,Γ

)

,

X̂−
k =

N+1
∑

i=1

w(i)X̂
(i)
k , θ̂−k =

N+1
∑

i=1

w(i)θ̂
(i)
k , Ẑk =

N+1
∑

i=1

w(i)Ẑ
(i)
k .

(13)

where h is the post-processing operator that estimates the computational FFRs based on

the properties Γ and the (P,Q) fields contained in X̂
(i)
k .

3. The correction step

L
X
k = X̂

(∗)
k Dw(σ

(∗))T , L
θ
k = θ̂

(∗)
k Dw(σ

(∗))T ,

{HL}k = Ẑ
(∗)
k Dw(σ

(∗))T , Pw = σ
(∗)
Dw(σ

(∗))T ,

Uk = Pw + {HL}TkR
−1
k {HL}k,

X̂+
k = X̂−

k + L
X
k U

−1
k {HL}TkR

−1
k

(

Z − Ẑk

)

,

θ̂+k = θ̂−k + L
θ
kU

−1
k {HL}TkR

−1
k

(

Z − Ẑk

)

.

(14)

The matrices σ
(∗), X̂

(∗)
k , Ẑ

(∗)
k , θ̂

(∗)
k ∈ R

N×(N+1), whose columns are σ(i), X̂
(i)
k , Ẑ

(i)
k , θ̂

(i)
k ,

with i = 1, . . . , N +1, respectively. Dw ∈ R
(N+1)×(N+1) is a diagonal matrix with values

Dii = w(i), i = 1, . . . , N + 1, i.e., the sigma-point weights.

4. If
‖Zk−Zk−1‖

‖Zk−1‖
> ǫ or k < K go to step 2 and k = k+1. Otherwise θ̂+k is the CFR estimate.

For the following experiments the relative absolute error was ǫ = 10−4, the maximum num-

ber of iterations was K=500, the initial guess was CFR=2.6 and the filter uncertainties were set

to σFFRinv
=0.001 (corresponding to the precision of the FFR equipment) and σθ̂=0.5. Parameter

uncertainty was empirically chosen to deliver the lowest disagreement, i.e., Z − Ẑk.

3.5 Experimental settings

In order to gain insight about the impact of the CFR on the computation of FFRCE, three study

cases were designed. The rest of the parameters were fixed for all scenarios, and computed in a

patient specific manner as follows: (a) the hyperemic inlet pressure, Pao is estimated following

Eq. (8); (b) the resting coronary blood flow, RCBF, is estimated following Eq. (9); (c) given

an arterial tree, the flow distribution per outlet, can be estimated in terms of percentages of a

normalized total inflow of 1 ml/s, and then automatically adapted for a given QT . Then, the

CFR, and consequently the hyperemic flow QT , for each scenario is calculated as follows:

Experimental setting #1 (E1): The CFR value is set to 2.6 for all the patients, following

reported values in the specialized literature (Johnson et al., 2012).

Experimental setting #2 (E2): The CFR value for all patients is the same, and it is estimated

by the Kalman filter.

Experimental setting #3 (E3): The CFR value for each patient is estimated by the Kalman

filter in a separate manner.
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4 RESULTS

Simulations were performed in a personal computer consisting of an Intel(R) Core(TM) i7-

7700 CPU @ 3.60GHz with 32 GB of (DDR4) RAM. The average time to solve a 0D simulation

was 156 ± 100 s. Meshes contained an average of 1453 ± 309 computational nodes. For

experiment E2, a total of 8 Kalman iterations were performed and the filter error was ≈ 0.4.

Regarding E3, the mean number of Kalman iterations was 289 ± 221 in the range (9, 500)

iterations and the filter error was 0.02± 0.03 (0, 0.11).

Table 4 presents a statistical summary of the results for all scenarios. When the Kalman fil-

ter is used to estimate one CFR for all patients, i.e. E2, the value obtained was CFR=2.4. This

results in the same mean error (ε=FFRinv-FFRCE) than the baseline E1, but with slightly lower

variance. Also, E2 reduces the range of values estimated for FFRCE. In turn, when the CFR

is estimated in a patient specific manner using the Kalman filter, i.e. E3, the mean error drops

to 0.00 ± 0.03. Although the range of ε is the smallest for E3, there are still some out-layers.

Such extreme values correspond to patients with FFRinv measurements in more than one artery.

Particularly, with low FFRinv in the RCA or LCx and other in the LAD. In these contexts, con-

sidering the flow distribution at the ostium of the major arteries, Table 3, and the fact that the

method estimates one CFR value for the complete arterial tree, the Kalman filter converges to

large CFR values, which for 3 cases was out of the physiological range [1, 6] (Johnson et al.,

2012)). For one patient, with one measurement in the RCA (FFRinv=0.97), the estimated CFR

value was 7.81, although the RCBF was in the range of physiological values, the flow distri-

bution clearly forced the exaggerated value of CFR. In another patient, with one measurement

in the LAD (FFRinv=0.72), the CFR estimation resulted in 7.28, although the RCBF was phys-

iologically consistent, and that the distribution granted 60% at the LAD inlet, the simulation

resulted in a large CFR value. These cases illustrate the importance of considering territory-

specific CFR estimation.

Figure 1 displays scatter and Bland-Altman plots, and Table 5 presents the predictive capa-

bilities for each experimental setting. On the n = 35 available measurements, the prevalence

of FFRinv < 0.8 is 20%. Estimating the CFR for all patients, i.e. E2, improves the overall pre-

dictive indexes, when compared to E1, by slightly increasing the true negative detection, which

is consistent with the fact that the CFR is reduced from 2.6 to 2.4. Note that, for E3, although

some FFRCE values feature a difference of almost 10%, they are correctly classified, resulting

in a perfect classification. Figure 2 shows the 3D model of a specific-patient, the corresponding

centerline and the solutions obtained for the E1 and E3 experimental settings. For such patient,

the FFRinv = 0.89 and the FFRCE
E1 = 0.78 and FFRCE

E3 = 0.89, with CFR 2.6 and 1.35.

In terms of significant (p < 0.05) linear correlations between FFRCE, FFRinv, ε, RCBF, CFR

and CBF it was found that: (a) For E1 and E2, r(FFRCE, ε) was −0.52 and −0.43 respec-

tively, indicating that the ε increased for smaller values of FFRCE; (b) For E2, it was found

that r(FFRinv, ε) = 0.34, which states that the ε increased as FFRinv increased. (c) For E3, it

was found that r(RCBF,CBF) = 0.34 indicating that the CBF tends to increase as the RCBF

increases. (d) Since CBF = CFR ∗RCBF, the correlation between RCBF and CBF was 1 in E1

and E2, and 0.97 in E3. (e) There was no significant correlation between RCBF and CFR.

5 DISCUSSIONS

The objective of this pilot study was to develop a computational infrastructure allowing pa-

rameter estimation through the Kalman filter in the context of the computational assessment of

FFR through 0D models. Particularly, this work focused in the analysis of the CFR. It was found

C.A. BULANT et.al.1736
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Exp.
FFRCE ε CFR CBF

(n = 35) (n = 35) (n = 24) (n = 24)

E1
0.89±0.09 -0.02±0.07 2.6 ±0.00 10.9±1.73

(0.67, 0.99) (-0.18, 0.13) (2.60, 2.60) (7.51, 14.3)

E2
0.9 ±0.09 -0.02±0.06 2.4 ±0.00 10.1±1.59

(0.70, 0.99) (-0.19, 0.11) (2.40, 2.40) (6.95, 13.2)

E3
0.88±0.08 0.00±0.03 4.05±2.56 17.1±11.5

(0.71, 0.97) (-0.10, 0.05) (1.35, 9.92) (4.78, 44.4)

Table 4: Simulation results, the mean ± SD

(min, max) values are reported for FFRCE,

the error (ε =FFRinv- FFRCE), the resting

coronary blood flow (RCBF), the coronary

flow reserve (CFR) and the resulting coro-

nary blood flow (CBF or QT ).

Exp. AUC ACC SEN SPE PPV NPV r†

E1 0.83 0.80 0.43 0.89 0.50 0.86 0.70

E2 0.84 0.86 0.43 0.96 0.75 0.87 0.70

E3 1.00 1.00 1.00 1.00 1.00 1.00 0.94

Table 5: Predictive capabilities for each set-

ting. The prevalence of FFRinv in the n = 35
measurements is 20%. The Area under the

ROC curve (AUC), accuracy (ACC), sensi-

tivity (SEN), specificity (SPE), positive pre-

dictive value (PPV), negative predictive value

(NPV) and the Pearson’s correlation coeffi-

cient (r). † Stands for p < 0.01

that under the assumptions presented here, the use of one CFR value for all patients resulted

in reasonable predictive capabilities, with low true positive prediction rates (SEN, PPV). Also,

estimating a patient specific CFR substantially improves predictive capabilities, and in 79% of

cases results in physiological values. In three patients with more than one FFRinv measurements,

the proposed methodology resulted in non-physiological CFR values, which points out towards

the need for territory-specific CFR estimation. Those cases have a low FFRinv measure in the

RCA or LCx, and another measure in another artery. Then, the large CFR values are explained

by the fact that the flow distribution criterion forces the total inflow to the RCA and LCx ostia to

be lower than 20% of the total CBF en some cases. In turn, for two patients with one measure-

ment each, the CFR estimation was out of the physiological range. In those cases, the RCBF

was slightly smaller than the physiological mean, and in one case the interrogated artery was

the RCA and in other the LAD. Then, in the first case a correction of the flow distribution may

solve the problem, while in the other it may be necessary to adapt also the RCBF estimation.

Such results suggest: (a) patient specific CFR is important to correctly compute FFRCE; (b)

a formula to estimate the CFR per patient should be developed, as for the RCBF; (c) the flow

distribution criterion needs revision to achieve physiological CFR values in all cases.

From the modeling point of view, the limitations are those inherent to the nature of 0D mod-

els, which have to be ultimately validated against 3D simulations. Such comparison would

allow us to quantify the error introduced by such reduced order modeling approach. Future

works will focus on: (i) the construction of the CFR formula based on clinical and anatomi-

cal patient-specific landmarks; (ii) the improvement of the flow distribution criterion based on

territory features; (iii) a rigorous comparison of the 0D against 3D and 1D models.
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Figure 1: Scatter and Bland-Altman plots

comparing FFRinv and FFRCE for each Exper-

imental setting. From left to right, the E1, E2

and E3 experiments.

Figure 2: Results for a random patient. First

row presents the segmented mesh and the cen-

terline. Solutions of E1 and E3 (mid and last

rows), in terms of flow and FFRCE.
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