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Abstract. In this article we evaluate the uncertain dynamic response of inhomogeneous curved beams

constructed with ceramic and metallic materials that vary in a given functional forms. The construction

process of this type of structures conducts to the presence of porosity in its domain. The porosity can be

source of uncertainties in the dynamic behavior. In order to study the dynamics of these structures, we

employed the Principle of Virtual Work to derive a curved beam model. The model incorporates shear

flexibility, variable curvature and variable porosity. It serves as a mean deterministic reference to the

studies on stochastic dynamics and uncertainty quantification, which are objectives of this article. The

uncertainty quantification procedure considers the introduction of random variables to characterize the

uncertainty in material or geometric properties such as elasticity modulus and/or density of the material

constituents, curvature radius of the beam, porosity parameters, among others. The probability den-

sity functions (PDF) of the random variables are derived appealing to the Maximum Entropy Principle.

Then, the probabilistic model is constructed with the basis of the deterministic model and both calcu-

lated within finite element approaches. Once the probabilistic model is constructed, the Monte Carlo

Method is employed to calculate random realizations. In order to identify the sensitivity of the ran-

dom parameters, a number of scenarios are evaluated in which the random variables can have different

distributions/variations according to the level of information known or at least assumed.

Mecánica Computacional Vol XXXVI, págs. 673-682 (artículo completo)
José G. Etse, Bibiana M. Luccioni, Martín A. Pucheta, Mario A. Storti (Eds.)

San Miguel de Tucumán, 6-9 Noviembre 2018

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://frbb.utn.edu.ar
http://frbb.utn.edu.ar


1 INTRODUCTION

Functionally Graded Materials (FGM) are increasedly employed in high tech goods, p.e.

aeronautics, astronautics, instrumental for medical care, artifacts and tools for energy harvest-

ing and so on. FGM are traditionally constructed with two or more components which can

be customized such that material properties in the structure can vary in selected directions ac-

cording to given functions. Constructive patterns can also be designed in order to optimize the

structural response. Depending on the constructive procedure the deposition of ceramic and

metallic constituents together with the effect of pressure and/or localized heat leads eventu-

ally to the formation of porosities or little cavities in the structural domain. This context shaped

what nowadays is known as Porous Functionally Graded Materials (PFGM). Porosity can be ob-

served as the unexpected result of the manufacturing process or as a part of regularly designed

microstructure with little cavities (Miao and Sun, 2010). In both cases there is a background of

constructive procedures or modeling approaches that involve uncertainty (Kou and Tan, 2010).

In very recent years the interest of studying the response of structures constructed with

PFGM has been unleashed. The research effort in this topic included mainly the dynamics

and elastic stability of plates (Rezaei et al., 2017), shells (Jouneghani et al., 2018; Ramezani

and Talebitooti, 2015), straight beams (Fazzolari, 2018; Chen et al., 2015), and micro/nano

structures (Ebrahimi et al., 2017; Ebrahimi and Daman, 2017), among others. The study of nat-

urally curved beams is of interest in a wide field of industrial applications as a support structure

or a simple part of complex technological system. However there is a lack of studies related to

curved beams constructed with PFGM, employing 1D formulations.

As it was previously mentioned the manufacturing of this type of structures has a number of

uncertainty sources that can substantially alter the response of the structure. Possible sources

of uncertainty can be found in material properties, boundary conditions, loads (Sampaio and

Cataldo, 2011), the hypotheses of model or the model itself (Soize, 2005), etc. In order to char-

acterize the uncertain response in dynamics of structures there are approaches that can be col-

lected into the following groups: parametric probabilistic approach (PPA) and non-parametric

probabilistic approach (NPPA) (Soize, 2005). In the first case the source of uncertainty are the

parameters of the model in the second case the model as a whole. In the PPA each uncertain pa-

rameter is associated to a random variable whose probability density function (PDF) is defined

according to given information about them (mean values, standard deviation, bounds, etc.).

The objective of this article is directed toward offering some contributions in the mechan-

ics/dynamics of curved PFGM beams and especially to quantify the propagation of the uncertain

in the dynamic response of the structure. In this context, the present article is arranged according

to the following scheme: As first step the hypotheses of the constitutive model are enunciated

and the deterministic structural model is introduced and conceived in the context of first or-

der shear theories. A finite element formulation is proposed and then employed to carry out

calculations of the deterministic model. Subsequently, the probabilistic model is constructed

employing the previous finite element formulation in which the random variables are incorpo-

rated. The PDF of the random variables (some elastic, electric properties, elastic foundations,

etc) are deduced by employing the Maximum Entropy Principle (Jaynes, 1957) subjected to

given known information such as expected values and/or coefficients of variation (CoV) of the

parameters. Then the Monte Carlo method is employed to simulate realizations. A statistical

analysis is done and the results presented in the form of frequency response functions or other

graphics of statistical interest.
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2 BRIEF DESCRIPTION OF THE DETERMINISTIC MODEL

2.1 Main hypotheses and Kinematics

Fig.1 represents a curved beam with variable curvature radius and opening angle α. It has

rectangular cross-section and it is contained in the plane π. The reference system is located

in the geometric center of the cross-section c. The present technical theory of curved beam is

based in the following assumptions:

• The cross-sectional shape is rigid in its own plane.

• Warping function is defined according to the reference point c.

• The beam is constructed with metallic and ceramic constituents varying in z-direction.

• Shear flexibility due to bending and twisting is incorporated.

• The model is derived in the context of linear elasticity.

Figure 1: Curved beam .
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where φx, φy, φz y φw are defined according to the following forms:

φx = θx, φy = θy, φz = θz −
uxc

R
, φw = θw +

θy
R

(2)

In the previous equations uxc, uyc, uzc are the displacements of the reference point, θy, θz
are bending rotational parameters, θx is the twisting angle and θw is a measure of the warping

intensity.

The warping function is approximated according to the following expression:

ω = ω̄F with F =
R

R + y
and ω̄ = −xy (3)
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2.2 Virtual work equations

The expression of the linearized virtual works can be written as:

WT =

∫

L

(
δD̃

T
Q̃
)
dx+

∫

L

δŨ
T

Mm
¨̃
Udx−

∫

L

δŨ
T

P̃Xdx+ δŨ
T

B̃X

∣∣∣
x=L

x=0
= 0, (4)

where:

Ũ
T
= {uxc, uyc, θz, uzc, θy, θx, θw} ,

D̃ = GDU Ũ,

Q̃
T
= {Qx,My,Mz, B,Qy, Qz, Tw, Tsv} ,

(5)

In previous expressions, GDU is a differential operator matrix, Mm is a matrix of mass coef-

ficients. P̃X and B̃X are vectors of applied forces and applied boundary conditions, respectively.

Q̃
T

is the vector of internal forces.

These internal forces are defined as:

{Qx,My,Mz, B} =

∫

A

σxx{1, z,−y, w}dydz,

{Qy, Qz} =

∫

A

{σxy, σxz}dydz,

Tw =

∫

A

(
σxy

∂ω̄

∂y
+ σxz

∂ω̄

∂z

)
dydz,

Tsv =

∫

A

[
−σxy

(
z +

∂ω̄

∂y

)
+ σxz

(
y +

∂ω̄

∂z

)]
dydz

(6)

with:

σxx = Exx (y, z) εxx

σxy = 2Gxy (y, z) εxy

σxz = 2Gxz (y, z) εxz

(7)

εxx = (ux,x + uy/R)F
2εxy = (uy,x − ux/R)F + ux,y

2εxz = uz,xF + ux,z

(8)

To model the porosity, assumed uniformly distributed (Fazzolari, 2018):

Exx(z) = (Exxc − Exxm) Vc + Exxm − β

2
(Exxc + Exxm)

Gxy(z) = (Gxyc −Gxym) Vc +Gxym − β

2
(Gxyc + Exym)

Gxz(z) = (Gxzc −Gxzm) Vc +Gxzm − β

2
(Gxzc + Exzm)

ρ(z) = (ρc − ρm) Vc + ρm − β

2
(ρc + ρm)

(9)

where:

Vc(z) =

(
z

h
+

1

2

)p

for z ∈
{
−h

2
,
h

2

}
(10)
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In Eq. (9) and Eq. (10), sub-indexes c and m identify Ceramic and Metallic counterparts,

parameter β ∈ [0, 1],⇒ β << 1 identifies the level of porosity and exponent p ∈ R identifies

the type of graded mixing.

2.3 Finite Element Discretization

A Finite Element formulation can be derived through discretization of Eq. (4). The dis-

cretization is carried out using isoparametric elements with five nodes and shape functions of

quartic order (Piovan and Cortinez, 2007). The vector of kinematic variables can be written as:

Ūe =
{

Ū
(1)
e , ..., Ū

(5)
e

}
, Ū

(j)
e =

{
uxcj , uycj , θzj , uzcj , θyj , φxj

, θxj

}
, j = 1, ..., 5 (11)

Then, the following finite element equation is derived:

KW̄ + CRD
˙̄W + M ¨̄W = F̄. (12)

where, M and K are the mass and stiffness matrices, CRD = η1M+η2K is the Rayleigh damping

matrix introduced as a part of an eigenvalue calculation in order to extract normal modes to

reduce de discretized model. η1 and η2 are computed employing given damping coefficients

(Piovan et al., 2013).

The response in the frequency domain of the linear dynamic system can be written as:

Ŵ (ω) =
[
−ω2M + iωCRD + K

]−1
F̂ (ω) , (13)

where Ŵ and F̂ are the Fourier transform of displacement and force vectors, respectively.

3 CONSTRUCTION OF THE PROBABILISTIC MODEL

The Finite Element formulation of the previously developed deterministic model is employed

as a reference expected response to construct the Probabilistic model. The Maximum Entropy

Principle (MEP) is used to derive the probability density functions (PDF) of the random vari-

ables associated with the uncertain parameters (Jaynes, 1957). This particular is quite sensitive

in stochastic analysis and PDF’s should be deduced according to the given information (nor-

mally and sensitively scarce) about the uncertain parameters. The deterministic model devel-

oped in the previous sections has many parameters that can be uncertain, however the most

relevant could be the exponent of the functionally graded variability, the level of porosity and

curvature parameter that contemplates variation in the curvature radius.

In the present problem random variables Vi, i = 1, 2, 3 are introduced such that they repre-

sent the aforementioned parameters. The random variables have bounded supports whose upper

and lower limits can be defined in terms of available information. The bounds, applying com-

mon definitions, are employed to calculate mean and standard deviation or the coefficient of

variation, and viceversa. It is assumed that the mean value (calculated with the given bounds)

of the random variable may coincide with the deterministic value in order to check convergence.

Provided that there is no information about the correlation or dependency of material proper-

ties, random variables Vi, i = 1, 2, 3, according to MEP, are assumed independent and non

correlated. Consequently, taking into account the previous context, the PDF’s of the random

variables can be written as:

pVi
(vi) = S[LVi

,UVi ]
(vi)

1

2
√
3V iδVi

, i = 1, ..., 13 (14)
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where S[LVi
,UVi ]

(vi) is the support, whereas LVi
and UVi

are the lower and upper bounds of

the random variable Vi. V i is the expect value of the ith random variable, whereas δVi
is its

coefficient of variation.

The Matlab function unifrnd
(
V i

(
1− δVi

√
3
)
, V i

(
1 + δVi

√
3
))

can be used to generate re-

alizations of random variables Vi, i = 1, 2, 3. Then, using Eq. (14) in the construction of the

matrices of finite element formulation given in Eq. (13), the stochastic finite element model can

be written as:

Ŵ (ω) =
[
−ω2

M+ iωCRD +K
]−1

F̂ (ω) . (15)

Notice that in Eq. (15) the math-blackboard typeface is employed to indicate stochastic enti-

ties.

The Monte Carlo method is used the simulate the stochastic dynamics, which implies the

calculation of a deterministic system for each independent realization of random variables Vi,

i = 1, 2, 3. The convergence of the stochastic response Ŵ can be calculated with the following

expression:

conv (NS) =

√√√√ 1

NMS

NMS∑

j=1

∫

Ω

∥∥∥Ŵj (ω)− Ŵ (ω)
∥∥∥
2

dω, (16)

where NS is the number of Monte Carlo samplings and Ω is the frequency band of analysis.

Clearly, Ŵ is the response of the stochastic model and Ŵ the response of the mean model or

deterministic model.

4 COMPUTATIONAL STUDIES

4.1 Preliminary validations and comparative studies

In this section a comparison and validation of the deterministic PFGM curved beam model

with respect to other approaches is performed. The first example corresponds to a comparison

of the present PFGM curved beam model reduced to the case of straight beam (i.e. R → ∞),

with respect to the beam model of Fazzolari (2018). The structure is constructed with Alu-

minium (Em = 70 GPa, ρm = 2702 Kg/m3, νm = 0.3) and Alumina (Ec = 380 GPa, ρc =
3960 Kg/m3, νc = 0.3) configuring a PFGM beam with porosity β = 0.2 and material dis-

tribution given by exponent P = 1.0. The beam is clamped in both extremes. In Table 1 a

comparison of Fazzolari’s model and the present model (reduced to the case of straight beam)

is shown. The frequency parameter evaluated is defined as ω̃ = ω(L2/h)
√

ρm/Em. It is possi-

ble to see the matching between both models. The percentage error is no greater than 0.32%.

l/h
5 10 15 20 50

Present Red. Model 7.7609 8.6615 8.8696 8.9465 9.0325

Fazzolari Model 7.7388 8.6806 8.8962 8.9746 9.0594

Table 1: Comparison of frequency parameters of different approaches

Fig. 2 shows a comparison of frequency response functions of the present 1D model with

a Finite Element 3D model for a PFGM beam with variable radius of curvature. The material

constituents and properties were the same of the previous example (i.e. Aluminium, Alumina,
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with P = 1.0 and β = 0.2), but curved with the following law of variation: R(x) = R0+Γc θ x
(i.e. an Archimedes spiral), where: R0 = 2.0m, Γc = 0.2, α0 = 2.0 rads. The damping param-

eters η1 and η2 for stiffness and mass matrices were calculated assuming damping coefficients

of 10 % and 5 % in 1st and 2nd natural frequencies.

Figure 2: FRF of the present 1D curved beam and COMSOL 3D.

It is possible to see an acceptable matching between both approaches, despite the Rayleigh

damping matrix was approximated only with two frequency terms. It certainly will match bet-

ter if more terms were included in the calculation of Damping matrix as suggested by Bathe

(1982) and Meirovith (1997). However, it should be soundly said that there is an important time

saving in the calculation of the FRF. Actually, the 1D procedure was 5 times faster than the 3D

approach, for nearly the same results.

4.2 Uncertainty quantification of PFGM beams with variable curvature

In this section the propagation of uncertainty associated with three modeling parameters is

carried out. The random variables to construct the probabilistic model are the variability in

the curvature through parameter Γc, the variability of porosity, through parameter β and the

variability of material distribution by means of the exponent P . The propagation of uncertainty

is evaluated in the frequency response functions of a clamped-free curved beam with variable

curvature of an Archimedes spiral (such that R(x) = R0 + Γc θ x, R0 = 2.0 m), with a sudden

Impact Force ‖F (L)‖ = 1.0 N applied in the free end. The expected values of the random

variables are: Γ̄c = 0.2, β̄ = 0.1, P̄ = 1.

The propagation of the uncertainty related to the aforementioned parameters is evaluated

by three ways: (a) by taking each random variable alone and assuming the remaining with

their nominal expected values, (b) by taking two by two random variables and the remaining

deterministic and (c) taking into account all random variables in the realizations. Thus in Fig. 3

one can see the convergence of two cases of realizations with the coefficient of variation in all

random variables (CoV = 0.1). In the most of realizations performed a stable convergence was

reached from NS = 500 Monte Carlo realizations.

In Fig. 4 one can see the 95% Confidence Internal of of the Frequency Response Functions

in the case of random variables with the same input Coefficient of variation: CoV = 0.1. Fig. 5

shows the Coefficient of variation of the frequency response outcome for different levels of

input uncertainty. As it can be seen in Fig. 5 the uncertainty of the response is quite relevant in

the frame of the third and fourth natural frequencies.

Fig. 6 shows the effect of different levels of input uncertainty and how they propagate in the

response measured through an output coefficient of variation δout.
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(a) (b)

Figure 3: Convergence for a case with CoV = 0.1. (a) Random curvature only, (b) All random variables.

(a) (b)

Figure 4: Confidence intervals for CoV = 0.1. (a) For the random variable Γc, (b) All random variables.

(a) (b)

Figure 5: Output δi for different inputs (a) For β only, (b) For P only.
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Figure 6: Sensibility of the parameters.

5 CONCLUSIONS

In the present paper a new model for porous functionally graded curved beams has been

presented. The model can reproduce results of porous functionally graded straight beams of

other authors. Also the curved beam model with variable curvature compares well with 3D ap-

proaches of the FEM implemented in commercial software. The following points are remarked:

• The variability of material properties propagates the uncertainty of the dynamic response.

• The uncertainty for graded properties is quite important.

• The uncertainty related to variable curvature radius is average.

• The uncertainty related to porosity is not so sensitive than the previous two.

• The variability of the response is intensely propagated in the vicinity of some natural

frequencies.

Future extensions to this research will include: Incorporation of piezo and magnetic layers

in a 1D formulation; the variation porosity and material properties as stochastic fields instead

of random variables; incorporation of other types of damping models and the variability of

properties with temperature, among others; Employment of reduced order modeling in order to

accelerate computing time; use of this simplified 1D model to construct basic meta-structures

to evaluate their sensitivity in stochastic dynamics.
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