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Abstract. This work presents some applications of topology optimization for fluid flow problems using 
the Virtual Element Method (VEM)  (Veiga et al. 2013) in arbitrary two-dimensional domains. The idea is 
to design an optimal layout for the incompressible Newtonian fluid flow, governed by the Stokes 
equations, to minimize the viscous drag. The porosity approach proposed by (Borrvall and Petersson, 
2003) is used in the topology optimization formulation. To solve the governing boundary value problem, 
the recently proposed VEM is used. The key feature that distinguishes the VEM from the classical finite 
element method is that the interpolation functions in the interior of the elements are not required to be 
computed explicitly. The use of appropriate local projection maps allows for the extractions of the rigid 
body motion and the constant strain components of the deformation. Therefore, the computation of the 
local matrices is reduced to the evaluation of geometric quantities on the boundaries of the elements. 
Finally, several numerical examples are provided to demonstrate the efficiency and applicability of the 
VEM for the topology optimization of fluid flow problems. 
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1 INTRODUCTION 

The method of topology optimization for fluid flow problems first appeared in the literature in 

2003. It was originally developed by (Borrvall and Petersson, 2003); examples for the optimal 

layout of channel flows with minimized drag or pressure drop are presented in his works. In the 

last decade, the method has been extended to other design objectives and constraints functions. 

Recently, the VEM has been successfully applied to a variety of problems, such as elasticity, 

heat, and fluid flow problems (e.g., Ahmad et al. (2013), Sutton (2017), Chi et al. (2017), and 

Brenner et al. (2017)) and is attractive in terms of computational efficiency compared to the FEM 

method.  

The present paper aims to present some applications of topology optimization for fluid 

problems, specifically for incompressible and Newtonian fluids, using the VEM in arbitrary two-

dimensional domains. It is organized as follows: In section 2, the theoretical background 

regarding Stokes–Darcy problem is briefly presented together with some theoretical background 

on the VEM. In section 3, we describe the topology optimization method applied to the fluid flow 

problem. In section 4, numerical examples are presented to demonstrate the effectiveness of the 

proposed method. Finally, concluding remarks are presented in section 5. 

2 VIRTUAL ELEMENT METHOD (VEM) 

2.1 Stokes–Darcy problem 

The Stokes–Darcy equation, typically known as the Brinkman equation, is expressed as 

follows (Gartling et al. 2007): 𝜇𝛻2𝒖 + �̅�𝒖 = 𝛻𝑝 − 𝒇𝛻. 𝒖 = 0 , (1) 

where �̅� is the inverse permeability of the porous medium. 

The Eq. (1) is typically used in topology optimization problems, where the parameter �̅� allows 

for the determination of the material type (solid/fluid) of a given point in the optimization 

domain. 

The weak formulation of the problem is obtained from Eq. (1) using the weighted residual 

method (WRM), as shown in Eq. (2), where 𝒗 and 𝑞 are the velocity and pressure virtual 

weighting functions, respectively. Further, (𝒖, 𝑝) ∈ 𝑽 × 𝑄 is to be obtained such that: 

 {𝑎(𝒖, 𝒗) + 𝑎𝛼(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 𝑙(𝒗),   ∀𝒗 ∈ 𝑉𝑏(𝒖, 𝑞) = 0,        ∀𝑞 ∈ 𝑄 , (2) 

 

where, in turn, 𝑎: 𝑽 × 𝑽 → ℝ,𝑏: 𝑽 × 𝑄 → ℝ,𝒍: 𝑽 → ℝ are the bilinear forms defined by 

 

{   
   𝑎(𝒖, 𝒗) ≔ 𝜇 ∫ 𝛻𝒖: 𝛻𝒗𝛺 𝑑𝛺 , 𝑎𝛼(𝒖, 𝒗) ≔ �̅� ∫ 𝒖. 𝒗𝛺 𝑑𝛺
𝑏(𝒗, 𝑝) ≔ −∫ 𝑝(𝛻. 𝒗)𝛺 𝑑𝛺 ,   𝑏(𝒖, 𝑞) ≔ ∫ 𝑞(𝛻. 𝒖)𝛺 𝑑𝛺 , 𝑙(𝒗) ≔ −∫ 𝒇. 𝒗𝛺 𝑑𝛺, (3) 
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Let {𝜙𝑗}𝑗=1𝑁
 be a basis of 𝑉ℎ and let {𝜓𝑗}𝑗=1𝑀

be a basis of 𝑄ℎ. If 𝒖ℎ =∑ 𝒖𝑗𝜙𝑗𝑁𝑗=1    ,    𝑝ℎ =∑ 𝑝𝑗𝜓𝑗𝑀𝑗=1   
then, it leads to the following linear systems of equations 

{  
  
   
 ∑ 𝒖𝑗𝑎ℎ(𝜙𝑖, 𝜙𝑗)𝑁𝑗=1 +∑ 𝒖𝑗𝑎ℎ𝛼(𝜙𝑖 , 𝜙𝑗)𝑁𝑗=1 +∑ 𝑝𝑙𝑏ℎ(𝜙𝑖, 𝜓𝑙)𝑀𝑙=1 = −∫ 𝑓𝑖. 𝜙𝑗𝛺 𝑑𝛺  

∑ 𝒖𝑗𝑏ℎ(𝜙𝑗 , 𝜓𝑙)𝑁𝑗=1 + 𝜆 ∫ 𝑞ℎ𝛺 𝑑𝛺 = 0
∫ 𝑝ℎ𝛺 𝑑𝛺 = 0

 (4) 

Or, equivalently 𝑲𝒙 = 𝑭, (5) 

where   𝒙 = (𝒖𝟏, … , 𝒖𝑁 , 𝑝1, … , 𝑝𝑀, 𝜆)𝑇, {𝑝1, … , 𝑝𝑀} are the element pressures, 𝜆 is the Lagrange 

multiplier,  𝑲 = [ 𝑨 𝑩 0𝑩𝑇 0 𝒂0 𝒂𝑇 0] , 𝑭 = [𝑪00], 𝑨 = 𝐴𝑖𝑗 ≔ 𝑎ℎ(𝜙𝑖, 𝜙𝑗) + 𝑎ℎ𝛼(𝜙𝑖 , 𝜙𝑗)   𝑖, 𝑗 ∈ {1, … ,𝑁}, 𝑩 = 𝐵𝑖𝑗 ≔ 𝑏ℎ(𝜙𝑖, 𝜓𝑗)    𝑖 ∈ {1, … ,𝑀}  𝑗 ∈ {1,… ,𝑁}, 𝑪 = 𝐶𝑗 ≔ 𝑙ℎ(𝜙𝑗)  𝑗 ∈ {1, … ,𝑁}, 
and 𝒂 is the vector of element areas. 

2.2 Virtual Element Projection 𝜫𝑬𝟎𝜵𝒗 

Based on the works of Gain et al. 2013; Veiga et al. 2014 and Chi et al. 2017, we consider the 

lower-order element (i.e., 𝑘 = 1, 𝑛𝑝𝑘 = 3  and 𝑛𝑝𝑘−1 = 2) in which the set of basis functions for 𝑃𝑘(𝐸), (linear polynomial space): 𝑚𝛼(𝑘),𝛼 = 1, … ,  𝑛𝑝𝑘 is defined as 𝑚1(1) = 1,  𝑚2(1) = 𝑥 − 𝑥𝐶ℎ𝐸 , 𝑚3(1) = 𝑦 − 𝑦𝐶ℎ𝐸 , (6) 

the gradients of 𝑃𝑘(𝐸) are 𝛻𝑚1(1) = [00] , 𝛻𝑚2(1) = 1ℎ𝐸 [10] , 𝛻𝑚3(1) = 1ℎ𝐸 [01], (7) 

and the basis functions  𝒎𝛼(𝑘−1), for the two-dimensional vector polynomial space [𝑃𝑘−1(𝐸)]2, 

with 𝛼 = 1, … , 𝑛𝑝𝑘−1, are defined as 𝒎1(0) = [10]    and   𝒎2(0) = [01] , (8) 

where 𝑥𝑐 and 𝑦𝑐 are the coordinates of the centroid of the element 𝐸, |𝐸| is the element area, and ℎ𝐸 = |𝐸|1/2 is the average element size. 
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Figure 1: Local VEM spaces and degrees of freedom of a given element. 

The first projection operator 𝛱𝐸0𝛻𝑣, which projects the gradient of 𝑣 onto [𝑃𝑘−1(𝐸)]2, satisfies 

the following expression: ∫ 𝛱𝐸0𝛻𝑣. 𝒑𝑑𝒙𝐸 = ∫ 𝛻𝑣. 𝒑𝑑𝒙𝐸 = ∮ 𝑣. 𝒑. 𝒏𝑑𝑠𝜕𝐸 − ∫ 𝑣 𝛻. 𝒑𝑑𝒙𝐸    ∀𝒑 𝜖 [𝑃𝑘−1(𝐸)]2 

 

(9) 

Introducing a set of shape functions for the local VEM space 𝑉ℎ(𝐸), 𝜙𝑖(𝑥), 𝑖 = 1,… , 𝑛𝑣, we 

can express 𝛱𝐸0𝛻𝑣 as 𝛱𝐸0𝛻𝑣 =∑𝛱𝐸0𝛻𝜙𝑖(𝒙)𝑛𝑣
𝑖=1 𝑉𝑖 .  

 

Therefore, Eq. (9) can be rewritten as ∫ 𝛱𝐸0𝛻𝜙𝑖. 𝒎𝛼(𝑘−1)𝑑𝒙𝐸 = ∫ 𝛻𝜙𝑖 .𝒎𝛼(𝑘−1)𝑑𝒙𝐸 = ∮ 𝜙𝑖 .𝒎𝛼(𝑘−1). 𝒏𝑑𝑠𝜕𝐸 − ∫ 𝜙𝑖𝛻.𝒎𝛼(𝑘−1)𝑑𝒙𝐸   (10) 

We can also express 𝛱𝐸0𝛻𝜙𝑖 using the set of basis 𝒎𝛼(𝑘−1) for [𝑃𝑘−1(𝐸)]2 as 𝛱𝐸0𝛻𝜙𝑖(𝒙) = ∑ 𝑆𝑖𝛽𝑛𝒑𝑘−1
𝛽=1 𝒎𝛽(𝑘−1)(𝒙) . (11) 

Finally, Eq. (10) can be rewritten as  ∑ 𝑆𝑖𝛽𝑛𝒑𝑘−1
𝛽=1 ∫ 𝒎𝛽(𝑘−1).𝒎𝛼(𝑘−1)𝐸 𝑑𝒙 = ∮ 𝜙𝑖 .𝒎𝛼(𝑘−1). 𝒏𝑑𝑠𝜕𝐸 − ∫ 𝜙𝑖𝛻.𝒎𝛼(𝑘−1)𝑑𝒙𝐸  (12) 

From Eq. (12), we can form the matrices 𝑴 and 𝑹 and compute the matrix 𝑺 as 𝑺 = 𝑹𝑴−𝟏 (13) 

2.3 Virtual Element Projection 𝜫𝑬𝜵𝒗 

The second projection operator 𝛻𝛱𝐸𝛻𝑣, projects 𝑣 onto 𝑃𝑘(𝐸), as 
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∫ 𝛻𝛱𝐸𝛻𝑣. 𝛻𝑝𝑑𝒙𝐸 = ∫ 𝛻𝑣. 𝛻𝑝𝑑𝒙𝐸 = ∮ 𝑣𝛻𝑝. 𝒏𝑑𝑠𝜕𝐸 −∫ 𝑣∆𝑝𝑑𝒙𝐸     ∀𝑝𝜖𝑃𝑘(𝐸) . (14) 

We express 𝛱𝐸𝛻𝑣 using the shape functions 𝜙𝑖 as 𝛱𝐸𝛻𝑣 =∑𝛱𝐸𝛻𝑛𝑣
𝑖=1 𝜙𝑖(𝒙)𝑉𝑖 . 

Therefore, Eq. (14) can be rewritten as ∫ 𝛻𝛱𝐸𝛻𝜙𝑖. 𝛻𝑚𝛼(𝑘)𝑑𝒙𝐸 = ∫ 𝛻𝜙𝑖 . 𝛻𝑚𝛼(𝑘)𝑑𝒙𝐸 = ∮ 𝜙𝑖𝛻𝑚𝛼(𝑘). 𝒏𝑑𝑠𝜕𝐸 − ∫ 𝜙𝑖∆𝑚𝛼(𝑘)𝑑𝒙𝐸  (15) 

We can also express 𝛱𝐸𝛻𝜙𝑖 in terms of the set of basis 𝑚𝛼(𝑘) for 𝑃𝑘(𝐸) as: 𝛱𝐸𝛻𝜙𝑖 = ∑𝑆𝑖𝛼𝛻𝑛𝑝𝑘
𝛼=1 𝑚𝛼(𝑘) . (16) 

Combining Eqs. (15) and (16) we obtain ∑𝑆𝑖𝛽𝛻𝑛𝑝𝑘
𝛽=2 ∫ 𝛻𝑚𝛽(𝑘).𝐸 𝛻𝑚𝛼(𝑘)𝑑𝒙 = ∮ 𝜙𝑖𝛻𝑚𝛼(𝑘). 𝒏𝑑𝑠𝜕𝐸 −∫ 𝜙𝑖∆𝑚𝛼(𝑘)𝑑𝒙𝐸  (17) 

From Eq. (17), we can form matrices 𝑴𝜵 and 𝑹𝜵 and compute the matrix 𝑺𝜵 as 𝑺𝜵 = 𝑹𝜵𝑴𝜵−1 (18) 

Additionally, we can express 𝛱𝐸𝛻𝜙𝑖(𝒙) in terms of the shape funtions 𝜙𝑖 as 

𝛱𝐸𝛻𝜙𝑖(𝒙) =∑𝑃𝑖𝑗𝛻𝑛𝑣
𝑖=1 𝜙𝑗(𝒙) (19) 

Using Eq. (4), we can express the terms 𝑎ℎ,𝑎ℎ𝛼 and 𝑏ℎ as follows: 

Computing 𝑎ℎ: 

We introduce the discrete counterpart 𝑎ℎ𝐸: 𝑽ℎ𝐸 × 𝑽ℎ𝐸 → ℝ of 𝑎𝐸 as 𝑎ℎ𝐸(𝒖ℎ, 𝒗ℎ) ≔ (𝛱𝐸0𝛻𝒖ℎ, 𝛱𝐸0𝛻𝒗ℎ)0,𝐸 + 𝑆𝐸(𝒖ℎ − 𝛱𝐸𝛻𝒖ℎ, 𝒗ℎ − 𝛱𝐸𝛻𝒗ℎ) (20) 

and, we define 

𝑎ℎ(𝒖ℎ, 𝒗ℎ) ≔ ∑ 𝑎ℎ𝐸(𝒖ℎ, 𝒗ℎ)𝐸∈𝛺ℎ   

to be the discrete counterpart of 𝑎. Therefore 𝑎ℎ𝐸(𝜙𝑖 , 𝜙𝑗) = ∫ 𝛱𝐸0𝛻𝜙𝑖𝐸 ⋅ 𝛱𝐸0𝛻𝜙𝑗𝑑𝑥 + 𝑆(𝜙𝑖 − 𝛱𝐸𝛻𝜙𝑖, 𝜙𝑗 − 𝛱𝐸𝛻𝜙𝑗) (21) 

Substituting Eq. (11) into Eq. (21), the consistency term can be expressed as 
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∫ 𝛱𝐸0𝛻𝜙𝑖𝐸 ⋅ 𝛱𝐸0𝛻𝜙𝑗𝑑𝒙 = ∑ ∑ 𝑆𝑖𝛼𝑆𝑗𝛽∫ 𝒎𝛽(𝑘−1) ⋅ 𝒎𝛼(𝑘−1)𝑑𝒙𝐸 = 𝑺𝑴𝑺𝑇 ,𝑛𝒑𝑘−1
𝛽=1

𝑛𝒑𝑘−1
𝛼=1  (22) 

and substituting Eq. (19) into Eq. (21), the stability term is given by 𝑆(𝜙𝑖 − 𝛱𝐸𝛻𝜙𝑖, 𝜙𝑗 − 𝛱𝐸𝛻𝜙𝑗) = (𝛿𝑖𝑘 − 𝑃𝑖𝑘𝛻 )(𝛿𝑗𝑘 − 𝑃𝑗𝑘𝛻 ) = (𝑰 − 𝑷𝛻)(𝑰 − 𝑷𝛻)𝑇, (23) 

Computing 𝑎ℎ𝛼: 

The discrete counterpart of 𝑎𝛼 is 𝑎ℎ𝛼𝐸(𝜙𝑖, 𝜙𝑗) = �̅� ∫ 𝛱𝐸𝛻𝜙𝑖𝐸 ⋅ 𝛱𝐸𝛻𝜙𝑗𝑑𝒙, (24) 

and, substituting Eq. (16) into Eq. (24), we obtain 

�̅� ∫ 𝛱𝐸𝛻𝜙𝑖𝐸 ⋅ 𝛱𝐸𝛻𝜙𝑗𝑑𝒙 = �̅�∑∑𝑆𝑖𝛼𝛻 𝑆𝑖𝛽𝛻 ∫ 𝑚𝛽(𝑘) ⋅ 𝑚𝛼(𝑘)𝑑𝒙𝐸 = �̅�|𝐸|𝑵𝑵𝑇 ,𝑛𝒑𝑘
𝛽=1

𝑛𝒑𝑘
𝛼=1  (25) 

where 

𝑵 = [  
 𝑆11𝛻 𝑆12𝛻 𝑆13𝛻𝑆21𝛻⋮ 𝑆22𝛻⋮ 𝑆2𝛻⋮𝑆𝑛𝑣1𝛻 𝑆𝑛𝑣2𝛻 𝑆𝑛𝑣3𝛻 ]  

 [𝑚1(1)(𝒙𝑐)𝑚2(1)(𝒙𝑐)𝑚3(1)(𝒙𝑐)]      and    𝒙𝑐 = [𝑥𝑐  𝑦𝑐]  

Computing 𝑏ℎ: 

Substituting Eq. (16) into Eq. (26), the discrete counterpart of 𝑏 can be expressed as 𝑏ℎ𝐸(𝜙𝑖) = −∫ 𝛻. 𝛱𝐸𝛻𝜙𝑖𝐸 𝑑𝒙 = −∑𝑆𝑖𝛼𝛻 𝛻𝑛𝒑𝑘
𝛼=1 𝑚𝛼(𝑘) (26) 

or 

𝑏ℎ𝐸 = −[  
 𝑆11𝛻 𝑆12𝛻 𝑆13𝛻𝑆21𝛻⋮ 𝑆22𝛻⋮ 𝑆2𝛻⋮𝑆𝑛𝑣1𝛻 𝑆𝑛𝑣2𝛻 𝑆𝑛𝑣3𝛻 ]  

 [𝛻𝑚1(1)𝛻𝑚2(1)𝛻𝑚3(1)
] = − 1ℎ𝐸 [  

   𝑆12
𝛻𝑆13𝛻⋮𝑆𝑛𝑣2𝛻𝑆𝑛𝑣2𝛻 ]  
   , 𝑖 = 1,… , 𝑛𝑣. (27) 

2.4 Time comparison VEM vs. FEM 

To illustrate the use of the VEM method, consider the diffuser domain problem (Pereira et al. 

2016). The geometry and boundary conditions are illustrated in Figure 2a. The other numerical 

values are the dynamic viscosity 𝜇 = 1 and the density of the fluid 𝜌 = 1. For the simulation, we 

used an Intel Core i7-8700 CPU @3.20GHz, with 16GB of RAM, and the Microsoft Windows 10 
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64-bit operating system. The numerical results of the velocity and pressure fields, using both 

VEM and FEM, are shown in Figures 2b and 2c, respectively. 

 

Figure 2: (a) Geometry and boundary condition of the diffuser square problem using polygonal elements, solution of 

the diffuser square problem using (b) VEM and (c) FEM method. 

In our numerical tests, we computed the total velocity and the average pressure at the center of 

the domain, for different levels of polygonal mesh refinement using the FEM and the VEM. The 

results are shown in Figure 3a and 3b, respectively. It is noteworthy that the computational time 

with respect to the size of the problem increases faster in the FEM compared to the VEM (see 

Figure 3c). 

               

 
Figure 3: Convergence of the: (a) velocity value at the center of the domain; and (b) average value of the pressure at 

the center of the domain; (c) Computational time comparison between the FEM and VEM. 

VEM FEM

velocity

field

pressure

field

(a) (b) (c)

(a) (b)

(c)
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3 TOPOLOGY OPTIMIZATION 

The objective and constraint functions, 𝑓 and 𝑔 respectively, of the optimization problem for 

the minimization of the dissipated power, neglecting the applied forces on the fluid, and subject 

to a constraint on its volume are given by              min                  ρ        𝑓 =   12 𝜇 ∫ 𝛻𝒖: 𝛻𝒖𝛺 𝑑𝛺 + 12∫ �̅�(𝜌)𝒖. 𝒖𝛺 𝑑𝛺 

            s.t.  𝑔 = ∫ 𝜌𝑑𝛺𝛺 − 𝑉𝑠  ≤ 0 (28) 

           with  𝑎(𝒖, 𝒗) + 𝑎𝛼(𝒖, 𝒗) + 𝑏(𝒗, 𝑝) = 0                                          𝑏(𝒖, 𝑞) = 0   and                                     0 ≤ 𝜌 ≤ 1  

The first term of the objective function 𝑓, corresponds to the dissipation owing to the viscous 

dissipative effects, while the second term corresponds to the dissipative effects of the porous 

media model, 𝜌 (design variable) that represents the value of the pseudo-densities at each point of 

the domain; 𝑉𝑠 is an upper bound for the final volume to be achieved in the solution of the 

optimization problem. 

 

Figure 4: Flowchart for the optimal solution of the diffuser problem. 

The Stokes–Darcy system of equations is used as a constraint in the topology optimization 

problem and is solved by the VEM. The Optimality Criteria, OC, (Gunwant and Misra, 2012) is 

used as the optimizer, and the objective and constraint function gradients, 𝜕𝑓 𝜕𝜌⁄  and 𝜕𝑔 𝜕𝜌⁄ , 

respectively, are obtained analytically. The topology optimization code includes a simple and 

efficient implementation of the sensitivities and a straightforward integration with polygonal 

VEM codes (Pereira et al. 2016). The main steps of the topology optimization process are 

illustrated in the flowchart depicted in Figure 4. 
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4 NUMERICAL RESULTS 

4.1 Diffuser problem 

We present numerical examples for the minimization of the viscous drag in both typical 

domains (see Figures 5a and 6a) presented by Pereira et al. (2016). The viscosity of the fluid was 𝜇 = 1 and we used continuation on the penalty parameter with values 𝑞 = {0.01; 0.1; 1}.The OC 

algorithm is used as the optimizer with a maximum of 150 iterations. 

 

Figure 5: (a) Geometry and boundary conditions for the diffuser (non-Cartesian domain); (b) optimal topology; 

(c) velocity field; (d) pressure field; and (e) convergence history. 

 

Figure 6: (a) Geometry and boundary conditions for the diffuser (Cartesian domain); (b) optimal topology; 

(c) velocity field; (d) pressure field; and (e) convergence history. 
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The solution for the curved domain was obtained for a volume fraction 𝑉 = 0.46085 (see 

Figure 5b) to match the solution for the square domain, where 𝑉 = 0.5 (see Figure 6b), as 

prescribed by Borrvall and Petersson, (2003), using 10,000 polygonal elements. The convergence 

histories of the objective function 𝑓, are shown in Figures 5e and 6e, respectively. 

5 CONCLUSIONS  

In this work we presented an application of topology optimization for fluid flow problems, 

governed by Stokes-Darcy equation, using the virtual element method (VEM). Representative 

examples found in the literature were tested and a comparative study was carried out between the 

FEM and VEM. We observed that the VEM presented a better computational performance and 

that this method is very well-suited to be used in topology optimization problems. An extension 

of the VEM for solving 3D fluid flow topology optimization problems, using the Navier-Stokes 

equations, is currently under investigation by the authors. 
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