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Abstract. A hydrocarbon reservoir is defined as unconventional when it requires special completion

techniques outside the conventional ones. In particular, tight gas, shale gas and shale oil reservoirs are

unconventional due to their very low or ultra low permeability. To allow oil and gas production, the for-

mation has to be fractured injecting fluids at high pressures. Fluid injection increases the pore pressure

and, consequently, the effective stress in rocks. In this way, a set of fractures are generated creating path-

ways where hydrocarbons can flow to a producing well. To simulate fracture propagation, a breakdown

pressure criterion is applied: during injection, once pore pressure becomes greater than a breakdown

value on a certain cell, that cell is fractured increasing permeability and porosity values. The objec-

tive of this work is to test a simple numerical model of hydraulic fracture generation in unconventional

reservoirs that combines a multiphase flow simulator with the breakdown pressure criterion. The multi-

phase flow through porous media is described by the well-known Black-Oil formulation, which uses as

a simplified thermodynamic model, the PVT data: formation volume factors and gas solubility in oil and

water. The numerical solution is obtained applying an IMPES (IMplicit Pressure Explicit Saturation)

finite difference technique. The multiphase flow simulator is used to model the fracture propagation in

a tight gas reservoir. In the examples we consider a very low permeability porous media with natural

fractures located in the same plane. We analyze the hydraulic fracture advance in that plane and its

interaction with natural fractures.
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1 INTRODUCTION

Hydraulic fracturing is a process that involves injecting fluids under high pressure into a

reservoir via the well. The objective is to create new fractures in the formation as well as

increase the size, extent and connectivity of existing natural fractures thus creating a pathway

by which the hydrocarbons can flow to the wellbore (Riahi and Damjanac, 2013). Sand or

ceramic materia in fine grains are pumped with the fluids in order to maintain the hydraulic

fracture open, once fluid injection stops and porous pressure start relaxing. This technique

allows to enhance the fluid flow from the formation to the wellbore and consequently the oil or

gas production. In unconventional reservoirs (tight or shale), hydraulic fracturing turns out to

be indispensable for the well to become productive (Nagel et al., 2013).

Rigorous modeling of hydraulic fracturing can be seen in Wangen (2011), based on Biot’s

equation and a finite element representation of the fracture pressure; and also in Pak and Chan

(2008), where a fully coupled thermal hydro-mechanical model is developed. A numerical

complex fracture network model of a shale gas reservoir with large amounts of natural fractures

can be seen in Zhao et al. (2014).

In this work we select a simplified approach to simulate fluid injection and fracture gener-

ation: we apply the well known Black-Oil formulation (Aziz and Settari, 1985; Fanchi, 1997)

to simulate the simultaneous flow of water and gas in our unconventional reservoir. The simu-

lator is run through different stages: as reservoir pressure increases and exceeds a limit value,

petrophysical properties are updated and a new run begins. The final fluid pressures and satura-

tions computed by the fluid simulator are used as initial values of the next run. The changes in

permeability and porosity due to the fracking procedure and the presence of injected fluids will

change the seismic response (Sena et al., 2011).

This work presents the simulations of water injection and fracture generation in a tight gas

reservoir. Commonly, in this type of reservoirs the fracking process produce bi-wing and planar

fractures perpendicular to the minimum principal stress (Wang and Zhang, 1998). This work is

a starting point that will enable us to continue working in estimating the fracture propagation.

In a second stage we will use the resulting static model and the black oil simulator to predict

hydrocarbon production through the fractured porous media.

2 METHODOLOGY

2.1 Gas - water flow model in porous media

To simulate water injection into a low permeability gas reservoir, we apply the well known

Black-Oil formulation to two-phase (gas phase, subindex g, and aqueous phase, subindex w) and

two component (Gas and Water) fluid flow. In this approach, Gas component may dissolve

in the aqueous phase but Water is not allowed to vaporize into the gas phase. The differential

equations are obtained by combining the mass conservation equations with Darcy’s empirical

Law. The mass conservation equations are:

1. For the Gas component,

−∇ · (ρg vg + Cg,w ρw vw) + qg =
∂
[

φ (ρgSg + Cg,w ρw Sw)
]

∂t
; (1)
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2. for the Water component,

−∇ · (Cw,w ρw vw) + qw =
∂
[

φ(Cw,w ρw Sw)
]

∂t
, (2)

where ρ is density at reservoir conditions, v is Darcy velocity, S is saturation, q mass rate of

injection per unit volume and φ is porosity. Cg,w, Cw,w are the mass fractions of Gas and Water

in the aqueous phase, respectively. In the Black-Oil formulation these fractions are computed

using a simplified thermodynamic model as

Cg,w =
Rs ρ

SC
g

Bw ρw
, Cw,w =

ρSCw
Bwρw

, ρg =
ρSCg

Bg

(3)

where Rs (Gas solubility in aqueous phase), Bg (Gas formation volume factor) and Bw (Water

formation volume factor) are the PVT data. Also ρSCg and ρSCw are the gas and water densities

at standard conditions. PVT data can be obtainesd by laboratory measurements or applying

correlations (Bidner, 2001).

The Darcy’s Law for two phase flow (Aziz and Settari, 1985; Jones, 1962) gives the momen-

tum balance for the fluids,

vg = −κ
κrg

ηg
(∇pg − ρgg∇D), (4)

vw = −κ
κrw

ηw
(∇pw − ρwg∇D), (5)

where D indicates depth, generally identified with the coordinate z, and g is the gravity con-

stant. Also, pg, pw are the fluid pressures and κ is the absolute permeability tensor, assumed to

be diagonal κ = diag(κx, κy, κz). For β = g, w, the functions krβ and ηβ are the relative perme-

ability and viscosity of the β-phase, respectively. The relative permeability krβ is function of

fluid saturation. Although Darcy’s Law has been obtained empirically, it can be deduced from

the Navier Stokes’ equation for newtonian fluids (Bear, 1972).

Replacing equations (3)-(5) into equations (1)-(2) and dividing by ρSCg and ρSCw , the follow-

ing nonlinear system of partial differential equations is obtained,

∇ · (κ(
κrg

Bgηg
(∇pg − ρgg∇D) +

Rsκrw

Bwηw
(∇pw − ρwg∇D))) +

qg

ρSCg
(6)

=

∂
[

φ

(

Sg

Bg

+
RsSw

Bw

)

]

∂t
,

∇ · (κ
κrw

Bwηw
(∇pw − ρwg∇D)) +

qw

ρSCw
=

∂
[

φ
Sw

Bw

]

∂t
. (7)

Two algebraic equations relating the saturations and pressures, complete the system:

Sw + Sg = 1, pg − pw = PC(Sw), (8)
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where PC is the capillary pressure.

The unknowns for the Black-Oil model are the fluid pressures pg, pw and the saturations Sg,

Sw for the gas and aqueous phases, respectively. This flow model does not take into account

chemical reactions.

The numerical solution is obtained with public-domain software BOAST (Fanchi, 1997)

which solves the differential equations using the IMPES algorithm (IMplicit Pressure Explicit

Saturation), based on a finite difference technique (Aziz and Settari, 1985). The basic idea of

IMPES is to replace equation (6) by a combination of the flow equations, therefore equation (6)

multiplied by Bg and equation (7) multiplied by (Bw −RsBg) are added. After some algebraic

manipulations and replacing pg by pw + PC(Sw) in the left side of the combined equation, the

following equation in pw (called pressure equation) is obtained,

Bg

[

∇ · (κ(
κrg

Bgηg
(∇pw − ρgg∇D) +

Rsκrw

Bwηw
(∇pw − ρwg∇D) +

κrg

Bgηg
∇PC))

]

+(Bw −RsBg)
[

∇ · (κ
κrw

Bwηw
(∇pw − ρwg∇D))

]

(9)

+Bg

qg

ρSCg
+ (Bw −RsBg)

qw

ρSCw
= φct

∂pw

∂t
,

where ct is the total compressibility ct = cf + Sgcg + Swcw with:

Formation compressibility: cf =
1

φ

dφ

dpw
,

Gas compressibility: cg = −
1

Bg

dBg

dpw
,

Water compressibility: cw = −
1

Bw

dBw

dpw
+

Bg

Bw

dRs

dpw
,

In the BOAST simulator, the nonlinear differential equations (9) and (7) are discretized ap-

plying a backward finite difference scheme in a block centered grid. The discretized equations

are linearized evaluating the pressure and saturation dependent coefficients (PVT parameters,

viscosities, relative permeabilities and capillary pressure) using the pressure and saturation val-

ues of the previous time step. First, the pressure equation (9) is solved implicitly. The Block

Successive Over Relaxation method (BSOR) is applied to compute the solution of the resulting

linear system. Once the pressures for the new time are obtained, we compute the saturations

explicitly from the discretization of equation (7). Consequently, the time step has to be selected

according to the stability restrictions (Savioli and Bidner, 2005).

2.2 Fracture Criterion

We apply a criterion based on a breakdown pressure (Pbd ), defined as follows: once pore

pressure p = Sgpg + Swpw becomes greater than the breakdown pressure on a certain cell, this

cell is fractured, .ie., permeability and porosity are incremented. The breakdown pressure can
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be computed from the horizontal stress σH and the tensile stress of the rock T0 (Economides and Hill,

1994) as follows,

Pbd = 3σHmin − σHmax + T0 − pH , (10)

where

σHmax = σHmin + σTect (11)

being σTect the tectonic stress contribution and σHmin the minimum horizontal stress obtained

from the vertical stress (σv ) as

σHmin =
ν

1− ν
σv (12)

where ν is the Poisson ratio and σv is calculated from formation density (ρf ) as

σv = g

∫ H

0

ρf dz. (13)

with H indicating the formation depth and g the gravity constant.

3 NUMERICAL RESULTS

The objective of this work is to analize the capacity of a black oil model coupled with a

simple fracture criterion to simulate fracture propagation during water injection.

In the numerical experiments, we consider a portion of a tight gas reservoir of 16.5 m × 30

m × 16.5 m. It is discretized using a 150 × 180 × 150 mesh. The mesh is uniform, but it is

refined around the injection point, i.e., there is a 120 × 120 × 120 zone where ∆x = ∆y =
∆z = 0.2ft = 0.061m, outside this zone ∆x = ∆y = ∆z = 1ft = 0.3048m.

The reservoir has natural fractures that are located in a 2D plane (y-z) near the injection

point. Figure 1 illustrates this description.
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Figure 1: Porosity distribution in a 2D section of the reservoir

The figure shows the porosity map in a portion of that 2D plane, corresponding to the refined

grid mentioned above. We can observe two natural fractures and the injection point in yellow.
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Matrix permeability and porosity are considered constant, κm = 0.0001 mD and φm = 0.1,

respectively. In natural fractures permeability and porosity are κf = 10 mD and φf = 0.4.

Finally, when the cell is hydraulically fractured, the properties become κF = 10000 mD and

φF = 0.9. Due to the low matrix permeability value, we need a small time increment to achieve

convergence, ∆t = 0.5 s. Properties are updated every 10 s.

Besides, we assume a fractal distribution of the breakdown pressure Pbd based on the von-

Kármán correlation function (Frankel and Clayton, 1986), as shown in Figure 2.
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Figure 2: Breakdown pressure distribution in a 2D section of the reservoir

The initial water saturation is Sw = 0.1. Water is injected at a constant flow rate of 0.14

m3/s.

The time evolution of the fracking process can be seen in Figures 3-11. Figures 3-5 show the

reservoir pressure map for times 10 seg, 50 seg and 160 seconds after injection, respectively,

while the corresponding water saturation evolution is shown in Figures 6-8. Besides in Figures

9-11 permeability values are plotted, as a way to represent the fracking procedure. Comparing

Figures 9-11 with Figures 3-5, we can see that permeability maps follow pressure distribution

as a consequence of the fracking criterion. Water front advance is a bit delayed as Figures 6-8

illustrate. The location of this front is very important to predict how far the sand or ceramic

materia arrives in order to maintain the fracture open.

In all these figures we can observe the influence of natural fractures during the injection pro-

cess. Pressure increases around the injection point and, consequently, permeability changes in

those cells. But once a natural fracture is reached, the hydraulic fracture follows its behavior:

the influence of the lower natural fracture is illustrated in Figures 9-10 (corresponding to pres-

sure maps Figures 3-4) while Figure 11 (corresponding to pressure map Figure 5) shows the

influence of the higher natural fracture.
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Figure 3: Pressure distribution in the 2D section after 10 seconds of injection
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Figure 4: Pressure distribution in the 2D section after 50 seconds of injection
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Figure 5: Pressure distribution in the 2D section after 160 seconds of injection
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Figure 6: Saturation distribution in the 2D section after 10 seconds of injection
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Figure 7: Saturation distribution in the 2D section after 50 seconds of injection
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Figure 8: Saturation distribution in the 2D section after 160 seconds of injection
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Figure 9: Permeability distribution in the 2D section after 10 seconds of injection
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Figure 10: Permeability distribution in the 2D section after 50 seconds of injection
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Figure 11: Permeability distribution in the 2D section after 160 seconds of injection
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In the second example we consider that the natural fractures are located vertically, as Figure

12 shows.
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Figure 12: Porosity distribution in a 2D section of the reservoir

Figures 13-14 show the reservoir pressure distribution for times 20 seconds and 160 seconds

after injection, while the corresponding water saturation and permeability evolutions are shown

in Figures 15-16 and Figures 17-18, respectively.

A behavior analogous to that of the first example is obtained. Figures 13 and 17 illustrate the

influence of the left natural fracture, while in Figures 14 and 18 the right fracture also affects the

evolution of the fracking process. Note that the left natural fracture affects earlier this behavior

because it is closer to the injection point, as Figure 12 shows. Again, water front advance

is delayed. This behavior is in agreement with planar fracture geometry induced from actual

microseismic data.

4 CONCLUSIONS

This work presents a simple model of generation of hydraulic fractures in unconventional

reservoirs. This model uses a public domain numerical simulator, the BOAST multiphase fluid

flow simulator, combined with a simple fracture criterion, based on a breakdown pressure

(Pbd ). The numerical results show that this approach is able to reproduce the propagation of

fractures in a two-phase reservoir with low porosity and permeability, giving the distribution

of pressures, saturations and permeabilities during the fracking process. Besides it allows to

analyze the influence of natural fractures, and in the same way, it can be applied to study the

influence of other different factors that could take part in the fracking process to enhance gas

or oil production. This work is a starting point that will allow us to continue working not only

in the prediction of the propagation of hydraulic fractures in different porous media, but also in

the generation of seismic images produced by the fracture events simulated by this model.
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Figure 13: Pressure distribution in the 2D section after 20 seconds of injection
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Figure 14: Pressure distribution in the 2D section after 160 seconds of injection
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Figure 17: Permeability distribution in the 2D fractured section after 20 seconds of injection
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Figure 18: Permeability distribution in the 2D fractured section after 160 seconds of injection
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