
SOLUTIONS FOR DISCONTINUOUS BIFURCATION ANALYSIS OF

SFRC

Sonia M. Vrech and Guillermo Etse

CONICET, National Scientific and Technical Research Council. CEMNCI, Faculty of Exact Sciences

and Engineering, National University of Tucuman, Argentina.

Keywords: Discontinuous bifurcation, failure, SFRC, Mixture Theory.

Abstract. In this work, the main properties of the discontinuous bifurcation conditions for Steel Fiber

Reinforced Concrete (SFRC) under different scenarios of stress states, fiber contents and directions are

derive and evaluated by the spectral properties of the critical localization tensor. A fracture energy-

based elastoplastic constitutive theory is considered for the concrete matrix. The contribution of three

different phases, i. e. concrete matrix, steel fibers bond-slip and dowel matrix-fibers effects are taken

into account through the Mixture Theory. Numerical results demonstrate the appropriate performance of

the localization indicator regarding different fiber volumes and distributions.
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1 INTRODUCTION

The development of innovative composites based on further enhancing of cementitious mate-

rials represents a new challenging and interesting field of the Material Science and the Structural

Engineering. Most significant examples are the High Performance Concretes and, particularly,

the Steel Fiber Reinforced Concrete (SFRC), see a.o. Gettu (2008); Li et al. (1998a,b); Mir-

sayah and Banthia (2002). Actually, the application of SFRC in civil and military constructions

have significantly increased in the last decades (and that trend still continues). The well-known

deficiencies of cement-based materials like concretes, i.e., low strength and brittle response in

low confinement and tensile regimes, can be mitigated by adding short steel fibers randomly

distributed into the cementitious mortar. The major advantages of SFRC, as compared with

plain concretes, is its higher residual tensile strength accompanied with elevate thoughness in

post-cracking regime, see Naaman and Reinhardt (2006); di Prisco and Plizzari (2009); Nguyen

et al. (2010). Since fiber bridging mechanisms mainly take place under cracked regime of con-

crete matrix, the mechanical behavior of uncracked members is practically not influenced by

the addition of fibers beyond the limited increase of the elastic stiffness.

In the last years, many constitutive theories were proposed for failure analysis of SFRC.

Most of them follow the Smeared Crack Approach (SCA) and, particularly, the flow theory

of plasticity, as in the cases of Hu et al. (2003); Seow and Swaddiwudhipong (2005) and the

continuum damage theory, see a.o. the work by Li and Li (2001). Besides the SCA-based pro-

posals, several constitutive models and theoretical formulations are based on the Discrete Crack

Approach. In this case the kinematic of cracking is modelled by means of the displacement field

in discontinuities or interfaces in the finite element discretization, see a.o. the contributions by

Prasad and Krishnamoorthy (2002), Etse et al. (2012).

The failure behavior of SFRC was evaluated not only at the macroscopic level of observation

but also at the mesoscopic one. We may here refer to the contributions by Leite et al. (2004)

and Schauffert and Cusatis (2012) who considered the effect of fibers dispersed into a Lattice

Discrete Particle Model, by Oliver et al. (2012) who highlighted the macroscopic response in

terms of the meso-structural phenomenon associated with the fiber-matrix bond-slip action, by

Gal and Kryvoruk (2011) who proposed a mesoscale two-step homogenization approach and

the proposals by Radtke et al. (2010) and Cunha et al. (2012) whereby the SFRC has been

considered as a two-phase material. A discrete crack model to predict failure behavior of SFRC

based on “Mixture Theory” concepts allowing both macroscopic and mesoscopic analysis has

been proposed by the authors in Etse et al. (2012); Caggiano et al. (2012).

The present work formulates a thermodynamically consistent fracture-based model for sim-

ulating the failure behavior of SFRC. Fiber effects are taken into account through both a bond-

slip formulation and a dowel model. The general basis of the proposed theory for SFRC are

presented in Section 2. Section 3 is related to the application of the well-known “Mixture

Theory” by Truesdell and Toupin (1960) to describe the mechanical behavior of SFRC, follow-

ing previous contributions by Oliver et al. (2008) and Vrech et al. (2010). Particularly, Sub-

section 3.1 reports the constitutive laws featuring the fracture-based softening formulation for

plain concrete, while the model description of the fiber-to-concrete interactions, approximating

throughout debonding mechanisms and dowel effects of fibers crossing cracks, are highlighted

in Subsections 3.2, 3.3 and 3.4. In Section 4 the discontinuous bifurcation condition for SFRC

is derived, while in Section 5 the analytical solution for localized failure is evaluated regarding

the variation of fiber contents and directions.
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2 THERMODYNAMICALLY CONSISTENT THEORY

A thermodynamically consistent elasto-plastic constitutive model is proposed for simulating

the failure behavior of SFRC. The fundamental assumptions are:

- SFRC as a composite material consisting of three phases: matrix concrete, steel fibers

bond-slip and dowel interaction mechanisms;

- according to the Mixture Theory, in every infinitesimal volume the kinematic field of the

equivalent continuum and that one of each mixture constituent agree;

- small strains are considered and the rate of the strain tensor is additively decomposed in

elastic and plastic components

ε̇ = ε̇e + ε̇p . (1)

Under these conditions, at each phase the Helmholtz free energy density can be decomposed

into the elastic and plastic components, according to

ρψ (εe, κ) = ρψe (εe) + ρψp (κ) , (2)

where ρ is the material density and κ the hardening/softening scalar variable, for the case of

isotropic plastic behavior. The elastic free energy density is defined as

ρψe (εe) =
1

2
εe : Ee : εe , Ee =

∂2ψe

∂ (εe)⊗ ∂ (εe)
(3)

being Ee the fourth-order elastic operator. Regarding Coleman’s relations, the constitutive

equation for the stress tensor as well as the dissipative stress can be derived from Eq. (2) as

σ = ρ
∂ψe

∂ε
with σ = Ee : εe , (4)

K = −ρ∂ψ
p

∂κ
, (5)

respectively, with the dissipation condition

D = σ : ε̇p −Kκ̇ ≥ 0 . (6)

A convex set of plastically admissible states {(σ, K) ≤ 0} with the yield function F =
F (σ, K) and a dissipative potential Q = Q (σ, K) which turns F in the case of associated

plasticity, are considered. Then, the rate equations for the plastic strains ε̇p and the scalar

plastic variable κ̇ take the forms

ε̇p = λ̇
∂Q

∂σ
and κ̇ = λ̇

∂Q

∂K
, (7)

being λ̇ the rate of the plastic parameter.

From the Prandtl–Reuss additive decomposition of the total strain rate tensor into the elastic

and plastic components that characterized the flow theory of plasticity in Eq. (1), and consider-

ing Eqs. (4) to (7), follow the constitutive equations (in rate form) as

σ̇ = σ̇e − λ̇Ee :
∂Q

∂σ
, σ̇e = Ee : ε̇e ,

K̇ = −λ̇H ∂Q

∂K
with H = ρ

∂2ψp

∂κ2

(8)

being H the hardening/softening modulus.

The Kuhn−Tucker conditions λ̇ ≥ 0, F (σ, K) ≤ 0, λ̇F (σ, K) = 0, complete the rate

formulation of the Plasticity in terms of hardening variables.
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3 COMPOSITE CONSTITUTIVE FORMULATION FOR SFRC

In this section, the constitutive formulation for SFRC based on the Mixture Theory by Trues-

dell and Toupin (1960) is presented. Main assumption of this theory is that in every infinitesimal

volume the kinematic field of the equivalent continuum and that one of each mixture constituent,

agree. Thus, the stress tensor of the mixture is defined as

σ = ωmσm + ωf
(

σ
f
N + σ

f
T

)

(9)

being ωm and ωf=1-ωm the weighting functions depending on the volume fraction of each

constituent, with m and f referring to concrete matrix and fibers, respectively. σ
f
N and σ

f
T

mean the bond-slip and dowel stresses due to the post-cracking interaction between fibers and

mortar. These stress components are obtained as the geometrical projection of normal and

tangential stresses, respectively. Fiber distribution can be uniform, elliptical, concentrated in

one direction or in certain given directions. To this end, the percentage of the total fiber volume

in given directions is computed.

3.1 Fracture energy-based thermodynamic model for plain concrete

The fracture energy-based LDP failure criterion by Vrech and Etse (2009) is adopted, ex-

pressed in terms of the normalized first and second Haigh Westergaard stress coordinates p∗=
I1/3f

′

c and ρ∗=
√
2J2/f

′

c, being f
′

c the uniaxial compressive strength and I1 and J2 the first and

second invariants to the stress and deviatoric stress tensors, respectively, as

F̄m (p∗, ρ∗) =
3

2
p∗2 +m0

(

ρ∗√
6
+ p∗

)

− c0 = 0 . (10)

The calibration of the cohesive and frictional parameters c0 and m0, respectively, in terms of

f
′

c and the uniaxial tensile strength f
′

t , leads to c0= 1 and m0= 3
(

f
′

c − f
′

t

)

/(2f
′

cf
′

t ).
The yield surfaces in the hardening and softening regimes are encompassed by the following

one single equation

Fm (p∗, ρ∗, Kh, Ks) =
3

2
p∗2 +m0

(

ρ∗√
6
+ p∗

)

−KhKs = 0 . (11)

Its evolution in the pre-peak regime is controlled by the variation of the hardening dissipative

stress 0.1 ≤ Kh < 1, while the softening dissipative stress remains constant Ks = 1. When

Kh = 1, the LDP criterion is reached. Under monotonic loading beyond peak stress the soft-

ening regime is activated. The strength degradation during the post-peak process is controlled

by the decay of the softening dissipative stress 1 > Kh ≥ 0 while Kh = 1 remains constant.

Evolution laws for dissipative stresses can be found in Vrech et al. (2016).

The adopted non-associated plastic flow is based on a volumetric modification of the yield

condition, resulting

Qm (p∗, ρ∗, Kh, Ks) = Fm (p∗, ρ∗, Kh, Ks)−m0p
∗(η − 1) (12)

being η the volumetric non-associativity parameter that varies between 0 ≤ η ≤ 1. The extreme

case when η = 0 corresponds to the isochoric plastic flow, while η = 1 results in associated

plasticity.
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3.2 Thermodynamically consistent crack-bridging effects of fibers crossing cracks

Steel fibers crossing active opened cracks, bring relevant bridging effects on the overall

SFRC post-peak toughness. In this work, the bond-slip mechanism between fibers and con-

crete matrix is taken into account by means of the axial (tensile) fiber stress σf
N . Besides, the

dowel effect is considered as a shear transfer mechanism within active cracks, by σf
T . Simple

one-dimensional thermodynamically consistent elasto-plastic constitutive models are proposed

in the followings subsections for both interaction mechanisms.

3.3 One-dimensional thermodynamic bond-slip model

The proposed elasto-plastic bond-slip constitutive model is defined by means of the follow-

ing equations

ψf
N =

1

2
Ef

(

εf,eN

)2

+
1

2
Hf

N

(

κfN

)2

(Free-energy potential)

σf
N = Ef (εf,eN − εf,pN ) (Constitutive relation)

Φf
N = |σf

N | − (σf
y +Kf

N) ≤ 0 (Yield function)

κ̇fN = λ̇ (Internal variable evolution)

K̇f
N = Hf

N κ̇
f (Softening law)

(13)

where εf,eN and εf,pN are the elastic and plastic axial strains, respectively, Ef the elastic module,

σf
y the equivalent yield stress and Hf

N the hardening/softening parameter; whereas κfN is the

internal variable, conjugated to the dissipative stress Kf
N .

According to Oliver et al. (2008), slipping-fibers and fiber-concrete interfaces define a serial

system, whereby the fiber total strain εfN is assumed as the sum of the proper fiber deformation

εd and the interface sliding εi, εfN = εd + εi. Whereas the fiber stress σf
N is identical on each

component σf
N = σd

N = σi
N . The material mechanical features of this serial system defining the

considered bond-slip model result

Ef =
1

1/Ed + 1/Ei

σf
y = min[σd

y ; σ
i
y]

Hf
N =

{

Hd
N , if σd

y < σi
y

H i
N , otherwise

(14)

where the superscripts d and i denote fiber and interface, respectively.

A complete pull-out analysis of a single fiber has been carried out by Vrech et al. (2016),

where the bond response of the fiber-concrete joint depending on the slip developed throughout

the embedment length are reported. Different states of the bond response have been also defined,

assuming fully elastic behavior of fibers:

- elastic;

- elastic-softening;

- softening;

- elastic-softening debonding;

- softening debonding; and

- debonding failure.
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3.4 Constitutive model for fiber dowel effect

The following one-dimensional elasto-plastic formulation is considered to take into account

the dowel effect of fibers crossing open cracks in cementitious matrix.

The thermodynamically consistent constitutive model proposed in this work is based on the

following equations

ψf
T =

1

2
Gf εf,eT · εf,eT +

1

2
Hf

T

(

κfT

)2

(Free-energy potential)

σf
T = Gf (εf,eT − εf,pT ) (Constitutive relation)

Φf
T =| σf

T | −(τ fy +Kf
T ) ≤ 0 (Yield function)

κ̇fT = λ̇ (Internal variable evolution)

K̇f
T = Hf

T κ̇
f
T (Softening law)

(15)

being εf,eT and εf,pT the elastic and plastic shear strain, respectively, κfT the internal variable con-

jugated to the dissipative stressKf
T andHf

T , once again, the hardening/softening parameter. The

adopted dowel stiffness Gf and the equivalent strength τ fy characterizing the dowel mechanism,

are based on the definition of both stiffness and strength of a generic fiber embedded in a con-

crete matrix and subjected to a transverse force. This formulation is developed in analogy to a

“semi-infinite” beam on a Winkler foundation following the empirical work by El-Ariss (2007)

and the experimental contributions by Dulacska (1972).

4 ANALYTICAL SOLUTION FOR LOCALIZED FAILURE

In the framework of the smeared crack approach, localized failure modes are related to dis-

continuous bifurcations of the equilibrium path, and lead to lost of ellipticity of the equations

that govern the static equilibrium problem. The inhomogeneous or localized deformation field

exhibits a plane of discontinuity that can be identified by means of the eigenvalue problem of

the acoustic or localization tensor, see Ottosen and Runesson (1991). Analytical solutions for

the discontinuous bifurcation condition, based on original works by Hadamard (1903), Thomas

(1961) and Hill (1962), conduce to the macroscopic localization condition

det(Qep) = 0 (16)

being Qep the elasto-plastic localization tensor, defined as

Qep = N ·Eep ·N (17)

with N , the normal direction to the discontinuity surface. The elasto-plastic tangent operator

can be obtained as

Eep = Ee − 1

h
Ee :

∂Q

∂σ
⊗ ∂F

∂σ
: Ee , (18)

whereby the generalized plastic modulus h is defined as

h =
∂F

∂σ
: Ee :

∂Q

∂σ
+H . (19)

The localized failure condition of Eq. (16) leads to the analysis of the spectral properties of

the localization tensor Qep, that can also be written as

Qep = Qe − 1

h
a∗ ⊗ a , (20)

S.M. VRECH, G. ETSE1600

Copyright © 2018 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



being Qe the elastic localization tensor

Qe = N ·Ee ·N (21)

and the vectors a and a∗ defined as

a =
∂F

∂σ
: Ee ·N , a∗ = N ·Ee :

∂Q

∂σ
. (22)

Then, the smallest autovalue of Qep with respect to the metric defined by (Qe)−1 is

λ(1) = 1− a(N) · [Q(N)]−1 · a∗(N )

h
= 0 . (23)

By replacing Eqs. (19) and (22) in (23), results the localization condition

Hc +
∂F

∂σ
: Ee :

∂Q

∂σ
− a · [Q(N)]−1 · a∗ = 0 , (24)

that serves as a basis for analytical and numerical evaluations of the most critical (maximum)

hardening parameter Hc = max[Hc(N )] for discontinuous bifurcation and of their associated

localization directions N .

5 NUMERICAL ANALYSIS OF THE DISCONTINUOUS BIFURCATION CONDI-

TION

In this section, the critical condition for localized failure in the form of discontinuous bi-

furcation of Eq. (16) is evaluated for plain concrete and SFRC by means of numerical analysis

with the proposed model. Main purpose of this analysis is, on one hand, to evaluate the effect of

steel fibers on the performance of the localization indicator or on the potential critical directions

for localized failure. On the other hand, this analysis allows to evaluate the sensitivity of the

fiber orientation on the critical condition for discontinuous bifurcation.

The uniaxial tensile tests by Abrishambaf et al. (2015) is considered. Corresponding material

properties are summarized in Table 1, while numerical predictions of the tensile stress-crack

width relationship for SFRC have been shown by Vrech et al. (2016).

The performance of the determinant of the normalized localization indicator det(Q) =
det(Qep)/ det(Qe) at peak and residual stress states of the uniaxial tensile test are shown in

Figures 1 and 2, respectively. Plain concrete, as well as SFRC with ωf= 7% and five different

distributions of fiber orientations. The results demonstrate that fiber contribution suppresses the

localization condition at peak stress state, in contrast with the plain concrete failure behaviour.

On the other hand, according to Figure 2, at residual stress states the localization condition is

satisfied by both, plain concrete and SFRC, when debonding failure also occurs. The proposed

constitutive theory is able to capture the effect of the fiber orientation on the elastic properties

degradation, not only regarding the amount of the degradation but also its orientation. This is a

relevant characteristic of the proposed material theory.

6 CONCLUSIONS

A thermodynamically consistent elasto-plastic constitutive theory aimed at predicting the

failure behavior of SFRC has been presented. The model formulation, founded on a macro-

scopic smeared crack approach and, particularly, on the full thermodynamic consistency, con-

siders the well-known Mixture Theory to account for the presence of fibers in concrete matrix.
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Table 1: Characterization of material properties by Abrishambaf et al. (2015).

Concrete properties
Elasticitymodulus − Em [GPa] 34.15
Poissonmodulus − ν 0.2
Compressive strengh − f ′c [MPa] 47.7
Tensile strengh − f ′t [MPa] 5.0
Non− associativity parameter − η 0.5

Steel fibers properties
Elasticitymodulus − Ed [GPa] 200.0
Yield stress − σd

y [MPa] 1100.0
Equivalent shear elasticmodulus − Gf [GPa] 15.0
Equivalent shear strength − τ fy [MPa] 441.67
Hardening/Softeningmoduli − Hf

N = Hf
T 0.0

Fiber− concrete interfaces properties
Elasticitymodulus − Ei [GPa] 200.0
Yield stress − σi

y [MPa] 198.0

Figure 1: Numerical localization analysis at peak of the uniaxial tensile test.

The model also accounts for bridging interactions of fibers in concrete cracks in the form of

fiber-to-concrete bond-slip and dowel mechanisms.

The discontinuous bifurcation conditions for SFRC has been derive by the analysis of the

spectral properties of the critical localization tensor and numerically evaluated. A distinguish

feature of the proposed constitutive theory is its ability to evaluate non-homogeneous fiber dis-

tributions in the concrete matrix and moreover, their effect on both the post-peak load–displacement

behavior and the orientation evolution of the critical localization direction in the form of dis-

continuous bifurcation.
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Figure 2: Numerical localization analysis at residual stress state of the uniaxial tensile test.
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