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Abstract. This paper aims at presenting an efficient approach for the optimal design of friction tunned

mass damper (FTMD) devices under uncertainties. The objective function of the optimization problem

is the maximization of structural reliability, which is approximated here as an out-crossing problem. The

solution of the equations of motion of the FTMD system leads to a nonlinear dynamical problem, which

coupled with the time dependent reliability problem, requires a substantial computational effort. An ad-

ditional complexity is that the design of a multiple FTMD system is nonlinear and leads to a multimodal

optimization problem. In order to address the issues of computational cost and multi-modality, an Ef-

ficient Global Optimization (EGO) method with Expected Improvement as infill criterion is employed.

The results showed that the EGO was able to successfully provide the optimum solution of the FTMD

design under uncertainty within a reasonable computational effort. For example, using only 80 points,

the EGO algorithm was able to consistently find the optimum solution for all the cases analyzed in this

paper. One aspect that is worth to be highlighted is that these results were obtained in problems with a

relatively high stochastic dimension, e.g. over 30 random variables.
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1 INTRODUCTION

A fast increase in development and application of passive energy dissipation devices, such as

viscoelastic dampers, friction dampers and tuned mass dampers (TMD) has been observed. One

of the main applications of such devices is to reduce the dynamic response of structures subject

to earthquake excitation. The design of these vibration attenuation devices must incorporate

the uncertainties inherent to the structural system and excitation into the design optimization

process (Marano et al., 2010), leading to an optimization under uncertainties problem (Ritto

et al., 2011; Lopez and Beck, 2013; Lopez et al., 2014). In civil engineering structures, the

main objective in the design of these dampers is the minimization of the structural probability

of failure (or maximization of its counterpart, the structural reliability) (Taflanidis et al., 2007;

Lopez et al., 2015).

A literature survey reveals that most of the TMD studies is associated with the hypothe-

sis of linear behavior for the structure and for the dampers (Gewei and Basu, 2010). In this

sense, researches involving some non linearity of this devices, such as the consideration of a

friction damping, which is the case of the friction tuned mass dampers (FTMDs), are signifi-

cantly reduced (Mantovani et al., 2017). One of the issues that appears with the inclusion of

this nonlinearities is the associated high computational cost, even for deterministic analysis.

Consequently, a well-known drawback of the coupling of the nonlinear dynamics, optimization

procedure and reliability analysis is the high computational cost, which may be inviable. Fur-

thermore, an additional complexity is that the design of a multiple FTMD system leads to a

multimodal optimization problem (Fadel Miguel et al., 2016; Mantovani et al., 2017). That is,

local optimization method may get stuck in local minima, and global optimization methods are

normally required.

In order to find a trade off between computational cost and global optimization, this paper

investigates the performance of Efficient Global Optimization (EGO) methods for the probabil-

ity of failure minimization in FTMD design. The Expected Improvement (EI) infill criterion

is employed to guide the EGO search, since it presented robust results in a series of optimiza-

tion problems (Jones, 2001). Moreover, the time dependent reliability problem is approximated

using a out-crossing approach (Melchers and Beck, 2018; Lopez et al., 2015).

The rest of the paper is organized as follows: Section 2 presents the problem of optimal

design of passive control devices for probability of failure minimization. The EGO algorithm

employed is detailed in Section 3. The design under uncertainty of a 2-FTMD system is an-

alyzed in Section 4. Finally, the main conclusions drawn from this paper are summarized in

Section 5.

2 OPTIMAL DESIGN OF PASSIVE CONTROL DEVICES

In this paper, we are interested in designing passive control devices that minimize the proba-

bility of failure of the structures subject to seismic excitations. Then, the optimal passive control

design optimization problem may be posed as:

Find: d ∈ R
nd (1)

that

Minimizes y(d) = Pf (d) (2)
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subject to

dmin ≤ d ≤ dmax, (3)

where y is the objective function given by the Pf is the structural probability of failure, d is the

design vector, while dmin and dmax are, respectively, the lower and upper bounds of the design

variables. For instance, in the FTMD design, d is comprised by the stiffness (kFi
) and friction

force magnitude (fFi
) of each FTMD device, while dmin and dmax are the manufacturing limits

of these variables.

As already mentioned, we use the design of multiple FTMD system as case study in this pa-

per. A full description of the nonlinear dynamics of the FTMD model may be found in Manto-

vani et al. (2017). For the reliability analysis and optimization process, we model all the FTMD,

structural and excitation parameters as random variables and group them into the random vec-

tor X. That is, X is comprised by: (a) the stiffness, damping and masses of the structure, (b)

masses, stiffness and friction forces of the control system (kF1
, ..., kFnF

,mF1
, ...,mFnF

, fF1
, ..., fFnF

),

and (c) parameters of the excitation (S0, ξg and ωg). In such a situation, the design vari-

ables of the problem are the mean value of the stiffness and friction forces of the FTMDs,

i.e. d =
(
E[kF1

], ...,E[kFnF
],E[fF1

], ...,E[fFnF
]
)
.

The evaluation of Pf of a building subject to seismic loads leads to a time dependent relia-

bility problem (Melchers and Beck, 2018; Lopez et al., 2015). Thus, in order to compute Eq.

(2), we employ the out-crossing rate approach, which is detailed in the next subsection.

2.1 Time-dependent reliability analysis

The time-variant reliability problem for the random system response displacement can be

formulated as follows. During a zero mean excitation event of specified duration tE , the re-

sponse of the oscillator should not exceed the specified limit - or barrier - ±b. This barrier b
can be the relative displacement between floors, displacement of top floor or any other critical

measure. For a linear system excited by a zero mean Gaussian process, the response is Gaussian

and the up-crossing rate can be evaluated as

v+z (d,X) =
σż(d,X)

σz(d,X)

1

2π
exp

(
−

b2

2 (σz(d,X))2

)
, (4)

where σz and σż are the standard deviation of the displacement and of the velocity response,

respectively. These quantities are obtained from the solution of the nonlinear dynamics model

presented in Mantovani et al. (2017). In Eq. (4), we make explicit the dependence of the

crossing rate on the design variables d as well as the random parameters X of the problem.

Thus, considering a stationary excitation, the probability of a failure event F of a given duration

tE may be computed as

P (F |d,X, tE) = 1− exp

(
−2

∫ tE

0

v+z (d,X)dt

)
, (5)

= 1− exp
(
−2tEv

+
z (d,X)

)
. (6)

(7)

The structural loading from an earthquake, which is the application topic, is described by

the arrival of an unknown number of events, which is modeled here as a Poisson process. Con-
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sequently, the probability of failure, for a design life tD with a number of events ne, may be

evaluated as

P (F |d,X, tD) =
∞∑

i=1

P (F |d,X, tE, ne = i) P (ne = i|tD), (8)

where

P (F |d,X, tE, ne = i) = 1− (1− P (F |d,X, tE))
i, (9)

P (ne = i|tD) =
(ν tD)

i exp(−ν tD)

i!
, (10)

in which ν is the arrival rate of events. Note that the probability in Eq. (8) still depends on the

random vector X, characterized by its joint probability density function fX. Consequently, in

order to compute the resulting structural failure probability (Pf ), we must then employ the Total

Probability Theorem, leading to

Pf (d) := EX[P (F |d,X, tD)] (11)

=

∫

X

P (F |d,x, tD)fX(x)dx, (12)

where E is the expected value operator and Pf (d) is the objective function to be minimized in

the optimization process. For the computational implementation, we may approximate Eq. (12)

using MCI by

Pf (d) ≈ P̂f (d) =
1

nr

nr∑

i=1

P
(
F |d,x(i), tD

)
, (13)

where x(i) are samples of X that comprise the sample set {x(1), ...,x(nr)} drawn from fX. Then,

we must set a sample size nr for the estimation of P̂f . For this purpose, we employ the following

procedure widely adopted in the literature of robust design (Capiez-Lernout and Soize, 2008;

Soize et al., 2008; Ritto et al., 2011; Lopez et al., 2015; Miguel et al., 2016b,a). First, we

construct a plot of the estimation of P̂f with respect to the sample size (nr). Then, we set nr as

the sample number around the value that P̂f becomes stable.

In the numerical analysis section, to make it easier to visualize the results, we present them

in terms of reliability index, instead of probability of failure. The relation between them is given

by

β̂(d) := −Φ−1(P̂f (d), (14)

and the problem becomes the maximization of β̂.

One may easily see that the computation of Eq. (13) is demanding, since it requires hundreds

of calls of the FE dynamics code. Hence, to mitigate the computational burden of the reliability

maximization, we employ the EGO approach described in the next section.
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3 EFFICIENT GLOBAL OPTIMIZATION (EGO)

According to Jones (2001), EGO methods generally follow these steps:

1. Construction of the initial sampling plan;

2. Construction of the Kriging metamodel;

3. Addition of a new infill point to the sampling plan and return to step 2.

Steps 2 and 3 are repeated until a stop criterion is met, e.g., maximum number of function

evaluations. The manner in which the infill points are added in each iteration is what differs the

different EGO approaches. In the next subsections, these steps are detailed in order to set the

basis of the proposed approach.

3.1 Initial sampling plan

In the first step, a Kriging sampling plan Γ containing ns points is created, i.e.

Γ = {d(1),d(2), . . . ,d(ns)}. (15)

A Latin Hypercube scheme is usually employed for this purpose. Then, the objective function

value J of each of these points is evaluated using the original model, obtaining

y = {y(1), y(2), . . . , y(ns)}, (16)

where y(i) = β̂
(
d
(i)
)
.

3.2 Deterministic Kriging

Step 2 constructs a prediction model ŷ based on the available information of the current

sampling plan - Γ and y - using Kriging Sacks et al. (1989). The basic idea behind Kriging is to

construct a metamodel whose response at any point d is modeled as a realization of a stationary

stochastic process. Thus, at any point on the design domain, we have a Normal random variable

with mean µ and variance σ2. Considering an initial sampling plan Γ, the covariance between

any two input points d(i) and d
(j) is:

Cov
[
d
(i),d(j)

]
= σ2

Ψ
(
d
(i),d(j)

)
, (17)

where Ψ is the correlation matrix, which has the form:

Ψ
(
d
(i),d(j)

)
=

n∑

k=1

exp
(
−θk

∣∣∣d(i)k − d
(j)
k

∣∣∣
pk
)
. (18)

The unknown parameters θk and pk may be found by Maximum Likelihood Estimate (MLE),

which then gives us the mean value - or average trend - and variance of the approximation:

µ̂ =
1T

Ψ
−1y

1T
Ψ−11

(19)

and

σ̂2 =
(y − 1µ̂)TΨ−1(y − 1µ̂)

ns

, (20)
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where 1 is the identity matrix. With the estimated parameters, the Kriging prediction at a given

point du is:

ŷ(du) =

Trend︷︸︸︷
µ̂ +

Model uncertainty︷ ︸︸ ︷
rTΨ−1(y − 1µ̂), (21)

where r is the vector of correlations of du with the other ns Kriging sampled points. The second

term in the righ-hand-side of Eq. (21) may be view as the model uncertainty since its value is

inferred based on the function value of the points of the sampling plan.

One of the key benefits of kriging and other Gaussian process based models is the provision

of an estimated error in its predictions. The Mean Squared Error (MSE), derived by Sacks et al.

(1989) using the standard stochastic process approach reads:

s2(d) = σ̂2

[
1− rTΨ−1r +

(1− 1T
Ψ

−1r)2

1T
Ψ−11

]
. (22)

Equation (22) has the intuitive property that it is zero at already sampled points. In other

words, Kriging acts as a regression model which exactly interpolates the observed input/output

data, i.e. ŷ(d(i)) = y(i).

3.3 Expected improvement (EI) infill criterion

The idea behind the EGO infill criteria is to use the information about the uncertainty of

the model given by the Kriging interpolation to guide the optimization search. In this pa-

per, we employ the EI infill criterion, which estimates the amount of improvement expected

at a given point in the domain. Such an improvement at a given design point d is evaluated

using its Kriging prediction ŷ (d) and variance s2(d). If the best solution found up to the cur-

rent iteration is fmin = min
{
y(1), y(2), · · · , y(n)

}
, then a improvement I may be measured as

I(d) = (fmin − ŷ(d)). As shown in Jones et al. (1998), the EI is analytically tractable and

given by

E(I(d)) = [fmin − ŷ(d)] Φ

(
fmin − ŷ(d)

s(d)

)
+ s(d)φ

(
fmin − ŷ(d)

s(d)

)
, (23)

where Φ(·) e φ(·) are the Gaussian cumulative and probability density functions, respectively.

Thus, at each iteration of the EGO algorithm, the point on the design domain that maximizes

Eq. (23) is added to the sampling plan Γ.

4 NUMERICAL EXAMPLE

In this section, we investigate the efficiency and robustness of the EGO algorithm for the

probability of failure minimization of FTMD design. The optimization problem analyzed in

this section is nonconvex and multimodal. We compared the performance of EGO to the Firefly

Algorithm (FA) algorithm Fadel Miguel et al. (2016), which was applied for the optimum design

of passive control devices Fadel Miguel et al. (2016).

The efficiency of the optimization methods is measured here as the number of objective

function evaluations (OFE), which also is set as the stopping criterion for all algorithms. It is

important to point out that all the algorithms employed in this section depend on random quanti-

ties. Therefore, the results obtained are not deterministic and may change when the algorithm is

run several times. For this reason, when dealing with stochastic algorithms, it is appropriate to

present statistical results over a number of algorithm runs Gomes et al. (2018). Thus, statistics
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over 10 independent runs are presented, such as the average, standard deviation (std), best and

worst results.
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Figure 1: Planar steel frame (dimensions in m): Adapted from Bertero and Kamil (1975)

The design of a 2-FTMD passive control system is analyzed. The structure, taken from

Bertero and Kamil (1975) and illustrated in Figure 1, is modeled as a planar steel building

frame, with ten stories (37.42 m high) and three spans (23.77 m wide). The linear elastic finite

element model is discretized in 70 elements and 44 nodes, totalizing 132 degrees of freedom. It

is adopted a consistent mass matrix and the classical Rayleigh proportional damping matrix.

As already mentioned, the seismic excitation, structural and FTMD parameters are mod-

eled as random variables and grouped into the vector X, whose mean value and coefficient of

variation are detailed in Table 1.

For the optimization problem, the design vector is d = (E[kF1
],E[fF1

],E[kF2
],E[fF2

]), and

its lower and upper bounds are respectively dmin = (0 kN/m, 0 kN/m, 0 kN, 0 kN) and

dmax = (66.5 kN/m, 2.50 kN, 66.5 kN/m, 2.50 kN). In addition, we set the design life as tD =
50 years in Eq. (8), and the earthquake occurrence rate as ν = 0.1 (1 event every 10 years) in

Eq. (10) accordingly to Lopez et al. (2015). Regarding the barrier b in Eq. (4), it is chosen as

the top floor horizontal displacement limit. Its value is set here as 0.467 m, following the results

obtained by Curadelli and Amani (2014) from a static nonlinear analysis (pushover), and also
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Table 1: Statistical information about the random variables

Building frame

Random variable Probability distribution Mean value Coefficient of variation (%)

Elasticity modulus (steel) Gamma 200 GPa 5.0

Specific mass (steel) Gamma 7500 kg/m3 5.0

Additional mass per story Gamma 44 t 5.0

Damping ratio Gamma 0.05 10.0

FTMD

Random variable Probability distribution Mean value Coefficient of variation (%)

Mass Gamma 1.94 t 5.0

Stiffness Gamma E[kFi
] 10.0

Friction force magnitude Gamma E[fFi
] 10.0

Seismic excitation

Random variable Probability distribution Mean value Coefficient of variation (%)

Natural frequency of the filter Normal 37.3 rad/s 20.0

Damping ratio of the filter Normal 0.30 20.0

PGA Log-normal 0.500g 20.0

employed by Mantovani et al. (2017).

For selecting the sample size required to approximate the failure probability, we employ the

procedure briefly described at the end of subsection 2.1. Thus, Figure 2 shows an example of

the behavior of β̂ with respect to nr in a given point of the domain. The estimator β̂ becomes

stable after approximately 400 simulations. Then, throughout the search, we set nr = 400 and

sample x(i) always with the same seed of the random number generator.

Table 2 presents the statistics of the objective function reached by each algorithm over inde-

pendent 10 runs. It presents the results of the FA having as stopping criterion OFE = 100, i.e.

Eq. (14) is run 100 times, while for EGO, we set OFE = 60 and 80. We may easily see from

this table that the EGO algorithm outperforms the FNM even for the OFE = 60 case.

Table 2: 2-FTMD - Statistics of the results for different optimization methods over 10 independent runs.

Optimization method Objective function (β)

mean std best worst

FA (OFE = 100) 3.94 0.08 4.12 3.85

EGO (OFE = 60) 4.15 0.15 4.25 3.80

EGO (OFE = 80) 4.19 0.11 4.25 3.89

5 CONCLUDING REMARKS

This paper aimed at presenting an efficient approach for the design of FTMD under uncer-

tainties. The objective function was set as the maximization of structural reliability, which was

evaluated using an out-crossing approach. The solution of the equations of motion of the FTMD

system led to a nonlinear dynamical problem, which coupled with the time dependent reliabil-

ity problem, required a substantial computational effort. Moreover, the design of a multiple

FTMD system is well-known to be a nonlinear and multimodal optimization problem. In order
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Figure 2: 2-FTMD problem: β̂ with respect to nr.

to address the issues of computational cost and multi-modality, an EGO method with EI as infill

criterion was employed.

In the numerical example section, the design of a 2-FTMD system was studied. The results

showed that the EGO was able to successfully provide the optimum solution of the FTMD

design under uncertainty within a reasonable computational effort. For example, using only 80

points, the EGO with EI algorithm was able to consistently find the optimum solution for all

the cases analyzed in this paper. One aspect that is worth to be highlighted is that these results

were obtained in problems with a relatively high stochastic dimension, e.g. over 30 random

variables.

The results obtained in this paper are promising and indicate further analysis of the perfor-

mance of EGO on FTMD design. Natural extensions of the present work include dealing with

non stationary excitations, nonlinear structural behavior and the modification of the objective

function to deal with consequences of failure, i.e. risk optimization.
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