Domain Decomposition for Linear Exterior Boundary Value Problems in 2D Elasticity

Mauricio A. Barrientos, Mario E. Mellado


In this paper we present new domain decomposition methods for solving linear exterior boundary value problems in elasticity. Our methods use a suitable Dirichlet to Neumann mapping which allows to transform the exterior problem into an equivalent boundary value problem in a bounded domain.
Then, the use of Steklov–Poincar´e operators and iterative solvers allows to obtain domain decomposition algorithms which can be naturally implemented on a parallel computing environment.

Full Text:


Asociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)
ISSN 2591-3522