Clasificación de Defectos en Uniones Pegadas Utilizando Inteligencia Artificial

Juan M. Fontana, Carlos E. Tais, Leonardo R. Molisani, Ronald J. O'Brien, Yolanda Ballesteros, Juan C. del Real

Abstract


La aplicación de adhesivos se encuentra ampliamente difundida en una amplia gama de industrias. Sin embargo, su uso ha sido evitado en estructuras en las cuales la seguridad es un factor crítico. A partir de la utilización de señales acústicas es posible detectar la degradación del material. En este trabajo se emplea el análisis del Nivel de Presión Sonora (NPS) como método evaluador global no destructivo de fallas en uniones adhesivas de probetas fabricadas con vigas de aluminio como sustrato y adhesivo acrílico. El diagnóstico se realiza preprocesando la señal de NPS y clasificando el daño mediante un sistema de reconocimiento de patrones basado en las técnicas de Redes Neuronales Artificiales (RNA). Los resultados de la validación cruzada demuestran que el clasificador presenta un adecuado porcentaje de detección de fallas.

Full Text:

PDF



Asociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)santafe-conicet.gov.ar
ISSN 2591-3522